Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Oct 15;319(Pt 2):329–332. doi: 10.1042/bj3190329

Improvements on the purification of mannan-binding lectin and demonstration of its Ca(2+)-independent association with a C1s-like serine protease.

S M Tan 1, M C Chung 1, O L Kon 1, S Thiel 1, S H Lee 1, J Lu 1
PMCID: PMC1217772  PMID: 8912663

Abstract

Mannan-binding lectin (MBL), previously called 'mannan-binding protein' or MBP, is a plasma C-type lectin which, upon binding to carbohydrate structures on micro-organisms, activates the classical pathway of complement. Purification of MBL relies on its Ca(2+)-dependent affinity for carbohydrate, but existing methods are susceptible to contamination by anti-carbohydrate antibodies. In the present study a sequential-sugar-elution method has been developed which can achieve a preparation of virtually pure MBL and its associated serine protease (MBL-associated serine protease, MASP) by two steps of affinity chromatography. In further separation of MASP from MBL, it was found that activated MASP was associated with MBL independent of Ca2+. Since MBL was found to bind to underivatized Sepharose 4B, the MBL-MASP complex was purified using Sepharose 4B and protease inhibitors were included to purify the complex with MASP in its proenzyme form. Analysis of thus-purified MBL-MASP complex by gel filtration on a Sephacryl S-300 column at pH 7.8 showed that the proenzyme MASP was also associated with MBL independently of Ca2+, but that the complex could be disrupted at a low pH (5.0). Therefore the mechanism of MBL-MASP-mediated complement activation appears to be significantly different from the C1-mediated classical pathway.

Full Text

The Full Text of this article is available as a PDF (297.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Drickamer K., Dordal M. S., Reynolds L. Mannose-binding proteins isolated from rat liver contain carbohydrate-recognition domains linked to collagenous tails. Complete primary structures and homology with pulmonary surfactant apoprotein. J Biol Chem. 1986 May 25;261(15):6878–6887. [PubMed] [Google Scholar]
  2. Drickamer K. Engineering galactose-binding activity into a C-type mannose-binding protein. Nature. 1992 Nov 12;360(6400):183–186. doi: 10.1038/360183a0. [DOI] [PubMed] [Google Scholar]
  3. Drickamer K., Taylor M. E. Biology of animal lectins. Annu Rev Cell Biol. 1993;9:237–264. doi: 10.1146/annurev.cb.09.110193.001321. [DOI] [PubMed] [Google Scholar]
  4. Fornstedt N., Porath J. Characterization studies on a new lectin found in seeds of Vicia ervilia. FEBS Lett. 1975 Sep 15;57(2):187–191. doi: 10.1016/0014-5793(75)80713-7. [DOI] [PubMed] [Google Scholar]
  5. Ikeda K., Sannoh T., Kawasaki N., Kawasaki T., Yamashina I. Serum lectin with known structure activates complement through the classical pathway. J Biol Chem. 1987 Jun 5;262(16):7451–7454. [PubMed] [Google Scholar]
  6. Kawasaki T., Kawasaki N., Yamashina I. Mannose/N-acetylglucosamine-binding proteins from mammalian sera. Methods Enzymol. 1989;179:310–321. doi: 10.1016/0076-6879(89)79133-3. [DOI] [PubMed] [Google Scholar]
  7. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  8. Lu J. H., Thiel S., Wiedemann H., Timpl R., Reid K. B. Binding of the pentamer/hexamer forms of mannan-binding protein to zymosan activates the proenzyme C1r2C1s2 complex, of the classical pathway of complement, without involvement of C1q. J Immunol. 1990 Mar 15;144(6):2287–2294. [PubMed] [Google Scholar]
  9. Malhotra R., Thiel S., Reid K. B., Sim R. B. Human leukocyte C1q receptor binds other soluble proteins with collagen domains. J Exp Med. 1990 Sep 1;172(3):955–959. doi: 10.1084/jem.172.3.955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Matsushita M., Fujita T. Activation of the classical complement pathway by mannose-binding protein in association with a novel C1s-like serine protease. J Exp Med. 1992 Dec 1;176(6):1497–1502. doi: 10.1084/jem.176.6.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Miyamura K., Leigh L. E., Lu J., Hopkin J., López Bernal A., Reid K. B. Surfactant protein D binding to alveolar macrophages. Biochem J. 1994 May 15;300(Pt 1):237–242. doi: 10.1042/bj3000237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ohta M., Okada M., Yamashina I., Kawasaki T. The mechanism of carbohydrate-mediated complement activation by the serum mannan-binding protein. J Biol Chem. 1990 Feb 5;265(4):1980–1984. [PubMed] [Google Scholar]
  13. Reid K. B. Proteins involved in the activation and control of the two pathways of human complement. Biochem Soc Trans. 1983 Jan;11(1):1–12. doi: 10.1042/bst0110001. [DOI] [PubMed] [Google Scholar]
  14. Sim R. B. The human complement system serine proteases C1r and C1s and their proenzymes. Methods Enzymol. 1981;80(Pt 100):26–42. doi: 10.1016/s0076-6879(81)80006-7. [DOI] [PubMed] [Google Scholar]
  15. Super M., Thiel S., Lu J., Levinsky R. J., Turner M. W. Association of low levels of mannan-binding protein with a common defect of opsonisation. Lancet. 1989 Nov 25;2(8674):1236–1239. doi: 10.1016/s0140-6736(89)91849-7. [DOI] [PubMed] [Google Scholar]
  16. Takada F., Takayama Y., Hatsuse H., Kawakami M. A new member of the C1s family of complement proteins found in a bactericidal factor, Ra-reactive factor, in human serum. Biochem Biophys Res Commun. 1993 Oct 29;196(2):1003–1009. doi: 10.1006/bbrc.1993.2349. [DOI] [PubMed] [Google Scholar]
  17. Takayama Y., Takada F., Takahashi A., Kawakami M. A 100-kDa protein in the C4-activating component of Ra-reactive factor is a new serine protease having module organization similar to C1r and C1s. J Immunol. 1994 Mar 1;152(5):2308–2316. [PubMed] [Google Scholar]
  18. Weis W. I., Drickamer K., Hendrickson W. A. Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature. 1992 Nov 12;360(6400):127–134. doi: 10.1038/360127a0. [DOI] [PubMed] [Google Scholar]
  19. Ziccardi R. J. Nature of the interaction between the C1q and C1r2S2 subunits of the first component of human complement. Mol Immunol. 1985 Apr;22(4):489–494. doi: 10.1016/0161-5890(85)90133-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES