Abstract
Different recombinant N-lobes of chicken ovotransferrin (oTF/2N) have been isolated from the tissue-culture medium of baby hamster kidney cells transfected with the plasmid pNUT containing the relevant DNA coding sequence. Levels of up to 40, 55 and 30 mg/1 oTF/2N were obtained for constructs defining residues 1-319, 1-332 and 1-337-(Ala)3 respectively. In addition, a full-length non-glycosylated oTF was expressed at a maximum of 80 mg/1 and a foreshortened oTF consisting of residues 1-682 was expressed at a level of 95 mg/l. These preparations were then used to produce, proteolytically, two different C-lobes (oTF/2C) comprising residues 342-686 and 342-682. The purified recombinant N-lobes (oTF/2N) are similar to the proteolytically derived half-molecule with regard to immunoreactivity and spectral properties; they show some interesting differences in thermal stability. A sequence analysis of the cDNA revealed six changes at the nucleotide level that led to six differences in the amino acid sequence compared with that reported by Jeltsch and Chambon [(1982) Eur. J. Biochem. 122, 291-295]. Electrospray mass spectrometry gives results consistent with these six changes. Interaction between the various N- and C-lobes was measured by titration calorimetry. Studies show that only those lobes that associate in solution are able to bind to the receptors on chick embryo red blood cells. These findings do not support a previous report by Oratore et al.
Full Text
The Full Text of this article is available as a PDF (453.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aisen P., Listowsky I. Iron transport and storage proteins. Annu Rev Biochem. 1980;49:357–393. doi: 10.1146/annurev.bi.49.070180.002041. [DOI] [PubMed] [Google Scholar]
- Anderson B. F., Baker H. M., Dodson E. J., Norris G. E., Rumball S. V., Waters J. M., Baker E. N. Structure of human lactoferrin at 3.2-A resolution. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1769–1773. doi: 10.1073/pnas.84.7.1769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson B. F., Baker H. M., Norris G. E., Rice D. W., Baker E. N. Structure of human lactoferrin: crystallographic structure analysis and refinement at 2.8 A resolution. J Mol Biol. 1989 Oct 20;209(4):711–734. doi: 10.1016/0022-2836(89)90602-5. [DOI] [PubMed] [Google Scholar]
- Bailey S., Evans R. W., Garratt R. C., Gorinsky B., Hasnain S., Horsburgh C., Jhoti H., Lindley P. F., Mydin A., Sarra R. Molecular structure of serum transferrin at 3.3-A resolution. Biochemistry. 1988 Jul 26;27(15):5804–5812. doi: 10.1021/bi00415a061. [DOI] [PubMed] [Google Scholar]
- Baker E. N., Anderson B. F., Baker H. M., Haridas M., Jameson G. B., Norris G. E., Rumball S. V., Smith C. A. Structure, function and flexibility of human lactoferrin. Int J Biol Macromol. 1991 Jun;13(3):122–129. doi: 10.1016/0141-8130(91)90036-t. [DOI] [PubMed] [Google Scholar]
- Brown-Mason A., Brown S. A., Butcher N. D., Woodworth R. C. Reversible association of half-molecules of ovotransferrin in solution. Basis of co-operative binding to reticulocytes. Biochem J. 1987 Jul 1;245(1):103–109. doi: 10.1042/bj2450103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown-Mason A., Woodworth R. C. Physiological levels of binding and iron donation by complementary half-molecules of ovotransferrin to transferrin receptors of chick reticulocytes. J Biol Chem. 1984 Feb 10;259(3):1866–1873. [PubMed] [Google Scholar]
- Church W. R., Brown S. A., Mason A. B. Monoclonal antibodies to the amino- and carboxyl-terminal domains of ovotransferrin. Hybridoma. 1988 Oct;7(5):471–484. doi: 10.1089/hyb.1988.7.471. [DOI] [PubMed] [Google Scholar]
- Cochet M., Perrin F., Gannon F., Krust A., Chambon P., McKnight G. S., Lee D. C., Mayo K. E., Palmiter R. Cloning of an almost full-length chicken conalbumin double-stranded cDNA. Nucleic Acids Res. 1979 Jun 11;6(7):2435–2452. doi: 10.1093/nar/6.7.2435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Day C. L., Anderson B. F., Tweedie J. W., Baker E. N. Structure of the recombinant N-terminal lobe of human lactoferrin at 2.0 A resolution. J Mol Biol. 1993 Aug 20;232(4):1084–1100. doi: 10.1006/jmbi.1993.1462. [DOI] [PubMed] [Google Scholar]
- Funk W. D., MacGillivray R. T., Mason A. B., Brown S. A., Woodworth R. C. Expression of the amino-terminal half-molecule of human serum transferrin in cultured cells and characterization of the recombinant protein. Biochemistry. 1990 Feb 13;29(6):1654–1660. doi: 10.1021/bi00458a043. [DOI] [PubMed] [Google Scholar]
- Huebers H. A., Finch C. A. The physiology of transferrin and transferrin receptors. Physiol Rev. 1987 Apr;67(2):520–582. doi: 10.1152/physrev.1987.67.2.520. [DOI] [PubMed] [Google Scholar]
- Jeltsch J. M., Chambon P. The complete nucleotide sequence of the chicken ovotransferrin mRNA. Eur J Biochem. 1982 Feb;122(2):291–295. doi: 10.1111/j.1432-1033.1982.tb05879.x. [DOI] [PubMed] [Google Scholar]
- Kurokawa H., Mikami B., Hirose M. Crystal structure of diferric hen ovotransferrin at 2.4 A resolution. J Mol Biol. 1995 Nov 24;254(2):196–207. doi: 10.1006/jmbi.1995.0611. [DOI] [PubMed] [Google Scholar]
- Lee D. C., McKnight G. S., Palmiter R. D. The chicken transferrin gene. Restriction endonuclease analysis of gene sequences in liver and oviduct DNA. J Biol Chem. 1980 Feb 25;255(4):1442–1450. [PubMed] [Google Scholar]
- Lin L. N., Mason A. B., Woodworth R. C., Brandts J. F. Calorimetric studies of serum transferrin and ovotransferrin. Estimates of domain interactions, and study of the kinetic complexities of ferric ion binding. Biochemistry. 1994 Feb 22;33(7):1881–1888. doi: 10.1021/bi00173a035. [DOI] [PubMed] [Google Scholar]
- Lin L. N., Mason A. B., Woodworth R. C., Brandts J. F. Calorimetric studies of the N-terminal half-molecule of transferrin and mutant forms modified near the Fe(3+)-binding site. Biochem J. 1993 Jul 15;293(Pt 2):517–522. doi: 10.1042/bj2930517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin L. N., Mason A. B., Woodworth R. C., Brandts J. F. Calorimetric studies of the binding of ferric ions to ovotransferrin and interactions between binding sites. Biochemistry. 1991 Dec 17;30(50):11660–11669. doi: 10.1021/bi00114a008. [DOI] [PubMed] [Google Scholar]
- Mason A. B., Brown S. A., Church W. R. Monoclonal antibodies to either domain of ovotransferrin block binding to transferrin receptors on chick reticulocytes. J Biol Chem. 1987 Jul 5;262(19):9011–9015. [PubMed] [Google Scholar]
- Mason A. B., Brown S. A. Differential effect of iodination of ovotransferrin and its two half-molecule domains on binding to transferrin receptors on chick embryo red blood cells. Biochem J. 1987 Oct 15;247(2):417–425. doi: 10.1042/bj2470417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mason A. B., Funk W. D., MacGillivray R. T., Woodworth R. C. Efficient production and isolation of recombinant amino-terminal half-molecule of human serum transferrin from baby hamster kidney cells. Protein Expr Purif. 1991 Apr-Jun;2(2-3):214–220. doi: 10.1016/1046-5928(91)90074-s. [DOI] [PubMed] [Google Scholar]
- Mason A. B., Miller M. K., Funk W. D., Banfield D. K., Savage K. J., Oliver R. W., Green B. N., MacGillivray R. T., Woodworth R. C. Expression of glycosylated and nonglycosylated human transferrin in mammalian cells. Characterization of the recombinant proteins with comparison to three commercially available transferrins. Biochemistry. 1993 May 25;32(20):5472–5479. doi: 10.1021/bi00071a025. [DOI] [PubMed] [Google Scholar]
- McFarlane A. S. IN VIVO BEHAVIOR OF I-FIBRINOGEN. J Clin Invest. 1963 Mar;42(3):346–361. doi: 10.1172/JCI104721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Metz-Boutigue M. H., Jollès J., Mazurier J., Schoentgen F., Legrand D., Spik G., Montreuil J., Jollès P. Human lactotransferrin: amino acid sequence and structural comparisons with other transferrins. Eur J Biochem. 1984 Dec 17;145(3):659–676. doi: 10.1111/j.1432-1033.1984.tb08607.x. [DOI] [PubMed] [Google Scholar]
- Oe H., Doi E., Hirose M. Amino-terminal and carboxyl-terminal half-molecules of ovotransferrin: preparation by a novel procedure and their interactions. J Biochem. 1988 Jun;103(6):1066–1072. doi: 10.1093/oxfordjournals.jbchem.a122381. [DOI] [PubMed] [Google Scholar]
- Oratore A., D'Andrea G., Moreton K., Williams J. Binding of various ovotransferrin fragments to chick-embryo red cells. Biochem J. 1989 Jan 1;257(1):301–304. doi: 10.1042/bj2570301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thibodeau S. N., Lee D. C., Palmiter R. D. Identical precursors for serum transferrin and egg white conalbumin. J Biol Chem. 1978 Jun 10;253(11):3771–3774. [PubMed] [Google Scholar]
- Thorstensen K., Romslo I. The role of transferrin in the mechanism of cellular iron uptake. Biochem J. 1990 Oct 1;271(1):1–9. doi: 10.1042/bj2710001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WILLIAMS J. A comparison of conalbumin and transferrin in the domestic fowl. Biochem J. 1962 May;83:355–364. doi: 10.1042/bj0830355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams J., Elleman T. C., Kingston I. B., Wilkins A. G., Kuhn K. A. The primary structure of hen ovotransferrin. Eur J Biochem. 1982 Feb;122(2):297–303. doi: 10.1111/j.1432-1033.1982.tb05880.x. [DOI] [PubMed] [Google Scholar]
- Williams J., Moreton K. The dimerization of half-molecule fragments of transferrin. Biochem J. 1988 May 1;251(3):849–855. doi: 10.1042/bj2510849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams S. C., Woodworth R. C. The interaction of iron-conalbumin (anion) complexes with chick embryo red blood ccells. J Biol Chem. 1973 Aug 25;248(16):5848–5853. [PubMed] [Google Scholar]