Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Oct 15;319(Pt 2):369–375. doi: 10.1042/bj3190369

Nitric oxide-dependent NAD linkage to glyceraldehyde-3-phosphate dehydrogenase: possible involvement of a cysteine thiyl radical intermediate.

M Minetti 1, D Pietraforte 1, A M Di Stasi 1, C Mallozzi 1
PMCID: PMC1217778  PMID: 8912669

Abstract

Previous studies have demonstrated that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) undergoes NAD(H) linkage to an active site thiol when it comes into contact with .NO-related oxidants. We found that a free-radical generator 2,2'-azobis-(2-amidinopropane) hydrochloride (AAPH), which does not release either .NO or .NO-related species, was indeed able to induce the NAD(H) linkage to GAPDH. We performed spin-trapping studies with purified apo-GAPDH to identify a putative thiol intermediate produced by AAPH as well as by .NO-related oxidants. As .NO sources we used .NO gas and two .NO-donors, S-nitroso-N-acetyl-D,L-penicillamine and 3-morpholinosydno-nimine hydrochloride (SIN-1). Because SIN-1 produces .NO and a superoxide radical simultaneously, we also tested the effects of peroxynitrite. All the .NO-related oxidants were able to induce the linkage of NAD(H) to GAPDH and the formation of a protein free-radical identified as a thiyl radical (inhibited by N-ethylmaleimide). .NO gas and the .NO-donors required molecular oxygen to induce the formation of the GAPDH thiyl radical, suggesting the possible involvement of higher nitrogen oxides. Thiyl radical formation was decreased by the reconstitution of GAPDH with NAD+. Apo-GAPDH was a strong scavenger of AAPH radicals, but its scavenging ability was decreased when its cysteine residues were alkylated or when it was reconstituted with NAD+. In addition, after treatment with AAPH, a thiyl radical of GAPDH was trapped at high enzyme concentrations. We suggest that the NAD(H) linkage to GAPDH is mediated by a thiyl radical intermediate not specific to .NO or .NO-related oxidants. The cysteine residue located at the active site of GAPDH (Cys-149) is oxidized by free radicals to a thiyl radical, which reacts with the neighbouring coenzyme to form Cys-NAD(H) linkages. Studies with the NAD+ molecule radio-labelled in the nicotinamide or adenine portion revealed that both portions of the NAD+ molecule are linked to GAPDH.

Full Text

The Full Text of this article is available as a PDF (544.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong D. A., Buchanan J. D. Reactions of O-.2, H2O2 and other oxidants with sulfhydryl enzymes. Photochem Photobiol. 1978 Oct-Nov;28(4-5):743–755. doi: 10.1111/j.1751-1097.1978.tb07011.x. [DOI] [PubMed] [Google Scholar]
  2. Bode J., Blumenstein M., Raftery M. A. 19F nuclear magnetic resonance studies of structure and function relationships in trifluoroacetonylated rabbit muscle glyceraldehyde-3-phosphate dehydrogenase. Biochemistry. 1975 Mar 25;14(6):1153–1160. doi: 10.1021/bi00677a009. [DOI] [PubMed] [Google Scholar]
  3. Brüne B., Dimmeler S., Lapetina E. G. NADPH: a stimulatory cofactor for nitric oxide-induced ADP-ribosylation reaction. Biochem Biophys Res Commun. 1992 Feb 14;182(3):1166–1171. doi: 10.1016/0006-291x(92)91854-j. [DOI] [PubMed] [Google Scholar]
  4. Brüne B., Dimmeler S., Molina y Vedia L., Lapetina E. G. Nitric oxide: a signal for ADP-ribosylation of proteins. Life Sci. 1994;54(2):61–70. doi: 10.1016/0024-3205(94)00775-6. [DOI] [PubMed] [Google Scholar]
  5. Brüne B., Lapetina E. G. Activation of a cytosolic ADP-ribosyltransferase by nitric oxide-generating agents. J Biol Chem. 1989 May 25;264(15):8455–8458. [PubMed] [Google Scholar]
  6. Brüne B., Lapetina E. G. Properties of a novel nitric oxide-stimulated ADP-ribosyltransferase. Arch Biochem Biophys. 1990 Jun;279(2):286–290. doi: 10.1016/0003-9861(90)90493-i. [DOI] [PubMed] [Google Scholar]
  7. Davies M. J., Gilbert B. C., Haywood R. M. Radical-induced damage to proteins: e.s.r. spin-trapping studies. Free Radic Res Commun. 1991;15(2):111–127. doi: 10.3109/10715769109049131. [DOI] [PubMed] [Google Scholar]
  8. Dimmeler S., Ankarcrona M., Nicotera P., Brüne B. Exogenous nitric oxide (NO) generation or IL-1 beta-induced intracellular NO production stimulates inhibitory auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase in RINm5F cells. J Immunol. 1993 Apr 1;150(7):2964–2971. [PubMed] [Google Scholar]
  9. Dimmeler S., Brüne B. L-arginine stimulates an endogenous ADP-ribosyltransferase. Biochem Biophys Res Commun. 1991 Aug 15;178(3):848–855. doi: 10.1016/0006-291x(91)90968-d. [DOI] [PubMed] [Google Scholar]
  10. Gatti R. M., Radi R., Augusto O. Peroxynitrite-mediated oxidation of albumin to the protein-thiyl free radical. FEBS Lett. 1994 Jul 18;348(3):287–290. doi: 10.1016/0014-5793(94)00625-3. [DOI] [PubMed] [Google Scholar]
  11. Graceffa P. Spin labeling of protein sulfhydryl groups by spin trapping a sulfur radical: application to bovine serum albumin and myosin. Arch Biochem Biophys. 1983 Sep;225(2):802–808. doi: 10.1016/0003-9861(83)90092-9. [DOI] [PubMed] [Google Scholar]
  12. Halliwell B., Gutteridge J. M. The antioxidants of human extracellular fluids. Arch Biochem Biophys. 1990 Jul;280(1):1–8. doi: 10.1016/0003-9861(90)90510-6. [DOI] [PubMed] [Google Scholar]
  13. Hauschildt S., Scheipers P., Bessler W. G., Mülsch A. Induction of nitric oxide synthase in L929 cells by tumour-necrosis factor alpha is prevented by inhibitors of poly(ADP-ribose) polymerase. Biochem J. 1992 Nov 15;288(Pt 1):255–260. doi: 10.1042/bj2880255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Huie R. E., Padmaja S. The reaction of no with superoxide. Free Radic Res Commun. 1993;18(4):195–199. doi: 10.3109/10715769309145868. [DOI] [PubMed] [Google Scholar]
  15. Jia L., Bonaventura C., Bonaventura J., Stamler J. S. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature. 1996 Mar 21;380(6571):221–226. doi: 10.1038/380221a0. [DOI] [PubMed] [Google Scholar]
  16. Kharitonov V. G., Sundquist A. R., Sharma V. S. Kinetics of nitrosation of thiols by nitric oxide in the presence of oxygen. J Biol Chem. 1995 Nov 24;270(47):28158–28164. doi: 10.1074/jbc.270.47.28158. [DOI] [PubMed] [Google Scholar]
  17. Kots AYa, Skurat A. V., Sergienko E. A., Bulargina T. V., Severin E. S. Nitroprusside stimulates the cysteine-specific mono(ADP-ribosylation) of glyceraldehyde-3-phosphate dehydrogenase from human erythrocytes. FEBS Lett. 1992 Mar 23;300(1):9–12. doi: 10.1016/0014-5793(92)80153-8. [DOI] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Lipton S. A., Choi Y. B., Pan Z. H., Lei S. Z., Chen H. S., Sucher N. J., Loscalzo J., Singel D. J., Stamler J. S. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature. 1993 Aug 12;364(6438):626–632. doi: 10.1038/364626a0. [DOI] [PubMed] [Google Scholar]
  21. Mallozzi C., Di Stasi A. M., Minetti M. Free radicals induce reversible membrane-cytoplasm translocation of glyceraldehyde-3-phosphate dehydrogenase in human erythrocytes. Arch Biochem Biophys. 1995 Aug 20;321(2):345–352. doi: 10.1006/abbi.1995.1404. [DOI] [PubMed] [Google Scholar]
  22. Maples K. R., Jordan S. J., Mason R. P. In vivo rat hemoglobin thiyl free radical formation following administration of phenylhydrazine and hydrazine-based drugs. Drug Metab Dispos. 1988 Nov-Dec;16(6):799–803. [PubMed] [Google Scholar]
  23. Mateo R. B., Reichner J. S., Mastrofrancesco B., Kraft-Stolar D., Albina J. E. Impact of nitric oxide on macrophage glucose metabolism and glyceraldehyde-3-phosphate dehydrogenase activity. Am J Physiol. 1995 Mar;268(3 Pt 1):C669–C675. doi: 10.1152/ajpcell.1995.268.3.C669. [DOI] [PubMed] [Google Scholar]
  24. McDonald L. J., Moss J. Stimulation by nitric oxide of an NAD linkage to glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6238–6241. doi: 10.1073/pnas.90.13.6238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Minetti M., Mallozzi C., Scorza G., Scott M. D., Kuypers F. A., Lubin B. H. Role of oxygen and carbon radicals in hemoglobin oxidation. Arch Biochem Biophys. 1993 Apr;302(1):233–244. doi: 10.1006/abbi.1993.1205. [DOI] [PubMed] [Google Scholar]
  26. Mohr S., Stamler J. S., Brüne B. Mechanism of covalent modification of glyceraldehyde-3-phosphate dehydrogenase at its active site thiol by nitric oxide, peroxynitrite and related nitrosating agents. FEBS Lett. 1994 Jul 18;348(3):223–227. doi: 10.1016/0014-5793(94)00596-6. [DOI] [PubMed] [Google Scholar]
  27. Molina y Vedia L., McDonald B., Reep B., Brüne B., Di Silvio M., Billiar T. R., Lapetina E. G. Nitric oxide-induced S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosylation. J Biol Chem. 1992 Dec 15;267(35):24929–24932. [PubMed] [Google Scholar]
  28. Moncada S. The 1991 Ulf von Euler Lecture. The L-arginine: nitric oxide pathway. Acta Physiol Scand. 1992 Jul;145(3):201–227. doi: 10.1111/j.1748-1716.1992.tb09359.x. [DOI] [PubMed] [Google Scholar]
  29. Niki E. Free radical initiators as source of water- or lipid-soluble peroxyl radicals. Methods Enzymol. 1990;186:100–108. doi: 10.1016/0076-6879(90)86095-d. [DOI] [PubMed] [Google Scholar]
  30. Pietraforte D., Mallozzi C., Scorza G., Minetti M. Role of thiols in the targeting of S-nitroso thiols to red blood cells. Biochemistry. 1995 May 30;34(21):7177–7185. doi: 10.1021/bi00021a032. [DOI] [PubMed] [Google Scholar]
  31. Pozdnyakov N., Lloyd A., Reddy V. N., Sitaramayya A. Nitric oxide-regulated endogenous ADP-ribosylation of rod outer segment proteins. Biochem Biophys Res Commun. 1993 Apr 30;192(2):610–615. doi: 10.1006/bbrc.1993.1459. [DOI] [PubMed] [Google Scholar]
  32. Radi R., Beckman J. S., Bush K. M., Freeman B. A. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem. 1991 Mar 5;266(7):4244–4250. [PubMed] [Google Scholar]
  33. Sakai K., Hasumi K., Endo A. Inactivation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase by koningic acid. Biochim Biophys Acta. 1988 Feb 10;952(3):297–303. doi: 10.1016/0167-4838(88)90130-6. [DOI] [PubMed] [Google Scholar]
  34. Stamler J. S. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell. 1994 Sep 23;78(6):931–936. doi: 10.1016/0092-8674(94)90269-0. [DOI] [PubMed] [Google Scholar]
  35. Tanuma S., Kawashima K., Endo H. Eukaryotic mono(ADP-ribosyl)transferase that ADP-ribosylates GTP-binding regulatory Gi protein. J Biol Chem. 1988 Apr 15;263(11):5485–5489. [PubMed] [Google Scholar]
  36. Zhang J., Snyder S. H. Nitric oxide stimulates auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9382–9385. doi: 10.1073/pnas.89.20.9382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zhang J., Snyder S. H. Purification of a nitric oxide-stimulated ADP-ribosylated protein using biotinylated beta-nicotinamide adenine dinucleotide. Biochemistry. 1993 Mar 9;32(9):2228–2233. doi: 10.1021/bi00060a014. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES