Abstract
A method is described for the production of detailed maps of intralobular variations of hepatocyte function and metabolite concentrations, based on variable destruction by digitonin of the lobule from the centrilobular direction. Instead of the conventional approach, in which isolated hepatocytes are then prepared and studied in suspension, perfusion is continued after digitonin treatment and the function of the unaffected lobular remnants is determined, or mean metabolite concentrations are measured by 31P-NMR. These measurements are plotted against the degree of destruction, determined precisely after each study by automated quantitative histomorphometry. These plots are transformed into curves of the function or metabolite concentration of nominal single cells at any point along the radius of the lobule. Gluconeogenesis from lactate remained stable, although reduced, even after 85-90% lobular destruction, predominated periportally and disappeared by 50% along the radius of the lobule. In 31P-NMR studies, employing 1.5 mM lactate as substrate, narrowing of the intracellular P1 resonance was observed as digitonin destruction increased; this was attributed to a decrease in the intralobular heterogeneity of the intracellular pH, which fell from approx. 7.9 to < 7.4 along the first 16% of the lobular radius (from the periportal end) and to < 7.3 in the remainder of the lobule. The ATP concentration rose, and then fell, along the radius of the lobule in a centripetal direction. The method is potentially generally applicable to a wide range of hepatocellular functions and to the measurement of metabolite concentrations, most conveniently those susceptible to estimation by NMR.
Full Text
The Full Text of this article is available as a PDF (640.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agius L., Peak M., Alberti K. G. Regulation of glycogen synthesis from glucose and gluconeogenic precursors by insulin in periportal and perivenous rat hepatocytes. Biochem J. 1990 Feb 15;266(1):91–102. doi: 10.1042/bj2660091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Agius L., Tosh D. Acinar zonation of cytosolic but not organelle-bound activities of phosphoenolpyruvate carboxykinase and aspartate aminotransferase in guinea-pig liver. Biochem J. 1990 Oct 15;271(2):387–391. doi: 10.1042/bj2710387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beech J. S., Williams S. R., Cohen R. D., Iles R. A. Gluconeogenesis and the protection of hepatic intracellular pH during diabetic ketoacidosis in rats. Biochem J. 1989 Nov 1;263(3):737–744. doi: 10.1042/bj2630737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen K. S., Katz J. Zonation of glycogen and glucose syntheses, but not glycolysis, in rat liver. Biochem J. 1988 Oct 1;255(1):99–104. doi: 10.1042/bj2550099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen R. D., Iles R. A., Barnett D., Howell M. E., Strunin J. The effect of changes in lactate uptake on the intracellular pH of the perfused rat liver. Clin Sci. 1971 Aug;41(2):159–170. doi: 10.1042/cs0410159. [DOI] [PubMed] [Google Scholar]
- Fafournoux P., Demigné C., Rémésy C. Carrier-mediated uptake of lactate in rat hepatocytes. Effects of pH and possible mechanisms for L-lactate transport. J Biol Chem. 1985 Jan 10;260(1):292–299. [PubMed] [Google Scholar]
- Guder W. G., Schmidt U. Liver cell heterogeneity. The distribution of pyruvate kinase and phosphoenolpyruvate carboxykinase (GTP) in the liver lobule of fed and starved rats. Hoppe Seylers Z Physiol Chem. 1976 Dec;357(12):1793–1800. doi: 10.1515/bchm2.1976.357.2.1793. [DOI] [PubMed] [Google Scholar]
- Guzmán M., Bijleveld C., Geelen M. J. Flexibility of zonation of fatty acid oxidation in rat liver. Biochem J. 1995 Nov 1;311(Pt 3):853–860. doi: 10.1042/bj3110853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iles R. A., Stevens A. N., Griffiths J. R., Morris P. G. Phosphorylation status of liver by 31P-n.m.r. spectroscopy, and its implications for metabolic control. A comparison of 31P-n.m.r. spectroscopy (in vivo and in vitro) with chemical and enzymic determinations of ATP, ADP and Pi. Biochem J. 1985 Jul 1;229(1):141–151. doi: 10.1042/bj2290141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jungermann K., Katz N. Functional specialization of different hepatocyte populations. Physiol Rev. 1989 Jul;69(3):708–764. doi: 10.1152/physrev.1989.69.3.708. [DOI] [PubMed] [Google Scholar]
- Matthews J. N., Altman D. G., Campbell M. J., Royston P. Analysis of serial measurements in medical research. BMJ. 1990 Jan 27;300(6719):230–235. doi: 10.1136/bmj.300.6719.230. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pösö A. R., Penttilä K. E., Suolinna E. M., Lindros K. O. Urea synthesis in freshly isolated and in cultured periportal and perivenous hepatocytes. Biochem J. 1986 Oct 15;239(2):263–267. doi: 10.1042/bj2390263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quistorff B. Gluconeogenesis in periportal and perivenous hepatocytes of rat liver, isolated by a new high-yield digitonin/collagenase perfusion technique. Biochem J. 1985 Jul 1;229(1):221–226. doi: 10.1042/bj2290221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quistorff B., Grunnet N., Cornell N. W. Digitonin perfusion of rat liver. A new approach in the study of intra-acinar and intracellular compartmentation in the liver. Biochem J. 1985 Feb 15;226(1):289–297. doi: 10.1042/bj2260289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quistorff B., Rømert P. High zone-selectivity of cell permeabilization following digitonin-pulse perfusion of rat liver. A re-interpretation of the microcirculatory zones. Histochemistry. 1989;92(6):487–498. doi: 10.1007/BF00524760. [DOI] [PubMed] [Google Scholar]
- Racine L., Scoazec J. Y., Moreau A., Bernuau D., Feldmann G. Effects of digitonin on the intracellular content of rat hepatocytes: implications for its use in the study of intralobular heterogeneity. J Histochem Cytochem. 1993 Jul;41(7):991–1001. doi: 10.1177/41.7.8515054. [DOI] [PubMed] [Google Scholar]
- Tosh D., Alberti G. M., Agius L. Glucagon regulation of gluconeogenesis and ketogenesis in periportal and perivenous rat hepatocytes. Heterogeneity of hormone action and of the mitochondrial redox state. Biochem J. 1988 Nov 15;256(1):197–204. doi: 10.1042/bj2560197. [DOI] [PMC free article] [PubMed] [Google Scholar]