Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Oct 15;319(Pt 2):435–440. doi: 10.1042/bj3190435

Expression of the human spermidine/spermine N1-acetyltransferase in spermidine acetylation-deficient Escherichia coli.

N A Ignatenko 1, J L Fish 1, L R Shassetz 1, D P Woolridge 1, E W Gerner 1
PMCID: PMC1217787  PMID: 8912678

Abstract

A cDNA encoding the human spermidine/spermine N1-acetyltransferase (N1SSAT) was conditionally expressed in a strain of Escherichia coli deficient in spermidine-acetylating activity. Conditional expression of this cDNA was performed under the control of the lac promoter, by addition of the non-hydrolysable lactose analogue isopropyl beta-D-thiogalactoside. Expression of the N1SSAT cDNA oriented in the sense direction resulted in the acetylation of spermidine at the N1 but not the N8 position and a decrease in endogenous spermidine contents and growth rates in these bacteria. When this cDNA was expressed in the antisense orientation, spermidine acetylation was not detected and endogenous spermidine contents and growth rates were unaffected. Increasing the endogenous N1-acetylspermidine concentration by addition of this amine to the culture medium did not suppress growth, and increasing endogenous spermidine pools by exogenous addition was not sufficient to restore optimal growth in cells expressing the human N1SSAT. Exogenous spermidine, but neither N1- nor N8-acetylspermidine, stimulated cell growth in strains unable to synthesize spermidine. These results suggest that one physiological consequence of spermidine acetylation in E. coli is growth inhibition. The mechanism of this inhibition seems to involve the formation of acetylspermidine, and is not simply due to a decrease in the intracellular concentration of non-acetylated spermidine.

Full Text

The Full Text of this article is available as a PDF (542.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balasundaram D., Dinman J. D., Wickner R. B., Tabor C. W., Tabor H. Spermidine deficiency increases +1 ribosomal frameshifting efficiency and inhibits Ty1 retrotransposition in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):172–176. doi: 10.1073/pnas.91.1.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balasundaram D., Tabor C. W., Tabor H. Spermidine or spermine is essential for the aerobic growth of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5872–5876. doi: 10.1073/pnas.88.13.5872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carper S. W., Willis D. G., Manning K. A., Gerner E. W. Spermidine acetylation in response to a variety of stresses in Escherichia coli. J Biol Chem. 1991 Jul 5;266(19):12439–12441. [PubMed] [Google Scholar]
  4. Casero R. A., Jr, Celano P., Ervin S. J., Applegren N. B., Wiest L., Pegg A. E. Isolation and characterization of a cDNA clone that codes for human spermidine/spermine N1-acetyltransferase. J Biol Chem. 1991 Jan 15;266(2):810–814. [PubMed] [Google Scholar]
  5. Casero R. A., Jr, Mank A. R., Xiao L., Smith J., Bergeron R. J., Celano P. Steady-state messenger RNA and activity correlates with sensitivity to N1,N12-bis(ethyl)spermine in human cell lines representing the major forms of lung cancer. Cancer Res. 1992 Oct 1;52(19):5359–5363. [PubMed] [Google Scholar]
  6. Casero R. A., Jr, Pegg A. E. Spermidine/spermine N1-acetyltransferase--the turning point in polyamine metabolism. FASEB J. 1993 May;7(8):653–661. [PubMed] [Google Scholar]
  7. Desiderio M. A., Weibel M., Mamont P. S. Spermidine nuclear acetylation in rat hepatocytes and in logarithmically growing rat hepatoma cells: comparison with histone acetylation. Exp Cell Res. 1992 Oct;202(2):501–506. doi: 10.1016/0014-4827(92)90105-h. [DOI] [PubMed] [Google Scholar]
  8. Fukuchi J., Kashiwagi K., Takio K., Igarashi K. Properties and structure of spermidine acetyltransferase in Escherichia coli. J Biol Chem. 1994 Sep 9;269(36):22581–22585. [PubMed] [Google Scholar]
  9. Fukuchi J., Kashiwagi K., Yamagishi M., Ishihama A., Igarashi K. Decrease in cell viability due to the accumulation of spermidine in spermidine acetyltransferase-deficient mutant of Escherichia coli. J Biol Chem. 1995 Aug 11;270(32):18831–18835. doi: 10.1074/jbc.270.32.18831. [DOI] [PubMed] [Google Scholar]
  10. Fuller D. J., Carper S. W., Clay L., Chen J. R., Gerner E. W. Polyamine regulation of heat-shock-induced spermidine N1-acetyltransferase activity. Biochem J. 1990 May 1;267(3):601–605. doi: 10.1042/bj2670601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gerner E. W., Kurtts T. A., Fuller D. J., Casero R. A., Jr Stress induction of the spermidine/spermine N1-acetyltransferase by a post-transcriptional mechanism in mammalian cells. Biochem J. 1993 Sep 1;294(Pt 2):491–495. doi: 10.1042/bj2940491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Halline A. G., Dudeja P. K., Jacoby R. F., Llor X., Teng B. B., Chowdhury L. N., Davidson N. O., Brasitus T. A. Effect of polyamine oxidase inhibition on the colonic malignant transformation process induced by 1,2-dimethylhydrazine. Carcinogenesis. 1990 Dec;11(12):2127–2132. doi: 10.1093/carcin/11.12.2127. [DOI] [PubMed] [Google Scholar]
  13. Harari P. M., Tome M. E., Fuller D. J., Carper S. W., Gerner E. W. Effects of diethyldithiocarbamate and endogenous polyamine content on cellular responses to hydrogen peroxide cytotoxicity. Biochem J. 1989 Jun 1;260(2):487–490. doi: 10.1042/bj2600487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jakus J., Wolff E. C., Park M. H., Folk J. E. Features of the spermidine-binding site of deoxyhypusine synthase as derived from inhibition studies. Effective inhibition by bis- and mono-guanylated diamines and polyamines. J Biol Chem. 1993 Jun 25;268(18):13151–13159. [PubMed] [Google Scholar]
  15. Kakegawa T., Guo Y., Chiba Y., Miyazaki T., Nakamura M., Hirose S., Canellakis Z. N., Igarashi K. Effect of acetylpolyamines on in vitro protein synthesis and on the growth of a polyamine-requiring mutant of Escherichia coli. J Biochem. 1991 Apr;109(4):627–631. doi: 10.1093/oxfordjournals.jbchem.a123431. [DOI] [PubMed] [Google Scholar]
  16. Large P. J. Enzymes and pathways of polyamine breakdown in microorganisms. FEMS Microbiol Rev. 1992 Jun;8(3-4):249–262. doi: 10.1111/j.1574-6968.1992.tb04991.x. [DOI] [PubMed] [Google Scholar]
  17. Libby P. R. Rat liver nuclear N-acetyltransferases: separation of two enzymes with both histone and spermidine acetyltransferase activity. Arch Biochem Biophys. 1980 Aug;203(1):384–389. doi: 10.1016/0003-9861(80)90190-3. [DOI] [PubMed] [Google Scholar]
  18. Macrae M., Coffino P. Complementation of a polyamine-deficient Escherichia coli mutant by expression of mouse ornithine decarboxylase. Mol Cell Biol. 1987 Jan;7(1):564–567. doi: 10.1128/mcb.7.1.564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mamont P. S., Seiler N., Siat M., Joder-Ohlenbusch A. M., Knödgen B. Metabolism of acetyl derivatives of polyamines in cultured polyamine-deficient rat hepatoma cells. Med Biol. 1981 Dec;59(5-6):347–353. [PubMed] [Google Scholar]
  20. Matsui I., Wiegand L., Pegg A. E. Properties of spermidine N-acetyltransferase from livers of rats treated with carbon tetrachloride and its role in the conversion of spermidine into putrescine. J Biol Chem. 1981 Mar 10;256(5):2454–2459. [PubMed] [Google Scholar]
  21. Mezl V. A., Fournier L. A., Garber P. M. N1-monoacetylation abolishes the inhibitory effect of spermine and spermidine in the reticulocyte lysate translation system. Int J Biochem. 1986;18(8):705–711. doi: 10.1016/0020-711x(86)90393-9. [DOI] [PubMed] [Google Scholar]
  22. Parry L., Lopez-Ballester J., Wiest L., Pegg A. E. Effect of expression of human spermidine/spermine N1-acetyltransferase in Escherichia coli. Biochemistry. 1995 Feb 28;34(8):2701–2709. doi: 10.1021/bi00008a038. [DOI] [PubMed] [Google Scholar]
  23. Porter C. W., Ganis B., Libby P. R., Bergeron R. J. Correlations between polyamine analogue-induced increases in spermidine/spermine N1-acetyltransferase activity, polyamine pool depletion, and growth inhibition in human melanoma cell lines. Cancer Res. 1991 Jul 15;51(14):3715–3720. [PubMed] [Google Scholar]
  24. Schnier J., Schwelberger H. G., Smit-McBride Z., Kang H. A., Hershey J. W. Translation initiation factor 5A and its hypusine modification are essential for cell viability in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 1991 Jun;11(6):3105–3114. doi: 10.1128/mcb.11.6.3105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Seiler N., Knödgen B. High-performance liquid chromatographic procedure for the simultaneous determination of the natural polyamines and their monoacetyl derivatives. J Chromatogr. 1980 Dec 12;221(2):227–235. doi: 10.1016/s0378-4347(00)84307-8. [DOI] [PubMed] [Google Scholar]
  26. Tabor C. W., Tabor H. Polyamines. Annu Rev Biochem. 1984;53:749–790. doi: 10.1146/annurev.bi.53.070184.003533. [DOI] [PubMed] [Google Scholar]
  27. Tabor H., Tabor C. W., Cohn M. S., Hafner E. W. Streptomycin resistance (rpsL) produces an absolute requirement for polyamines for growth of an Escherichia coli strain unable to synthesize putrescine and spermidine [delta(speA-speB) delta specC]. J Bacteriol. 1981 Aug;147(2):702–704. doi: 10.1128/jb.147.2.702-704.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Xie Q. W., Tabor C. W., Tabor H. Deletion mutations in the speED operon: spermidine is not essential for the growth of Escherichia coli. Gene. 1993 Apr 15;126(1):115–117. doi: 10.1016/0378-1119(93)90598-w. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES