Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Oct 15;319(Pt 2):463–469. doi: 10.1042/bj3190463

Evidence for rapid consumption of millimolar concentrations of cytoplasmic ATP during rigor-contracture of metabolically compromised single cardiomyocytes.

I Allue 1, O Gandelman 1, E Dementieva 1, N Ugarova 1, P Cobbold 1
PMCID: PMC1217791  PMID: 8912682

Abstract

Cytoplasmic ATP can be measured continuously in single cardiac myocytes by monitoring the luminescence from microinjected firefly luciferase. We show here that the signals are markedly influenced by changes in cytoplasmic pH, and the calibration of the signals as ATP concentration is markedly affected by cytoplasmic protein. Measurements with a pH-sensitive fluorescent dye show that intracellular pH (pHi) can be clamped at pH 7.08 by perfusing cells with a modified bicarbonate-buffered Krebs saline containing 92 mM NaHCO3 and equilibrated with 20% CO2. Calibration of the firefly luciferase signal in vitro in the presence of high concentrations of BSA (180 mg/ml), to simulate the cytoplasmic protein concentration, revealed a shift in Km (ATP) to 2 mM, from approx. 400 microM in the absence of albumin in an identical ionic milieu. Luciferase measurements in pH-clamped cells show that metabolically poisoned isolated rat ventricle cardiomyocytes enter rigor at a cytoplasmic ATP concentration of between 1 and 2 mM. As the cells shorten in rigor, a process that is complete in 30-40 s, the cytoplasmic ATP concentration falls simultaneously to a level of typically 20 microM. When cyanide is removed 10 min later, to simulate reoxygenation, the signal recovers over a period of 2-3 min to a level approx. 70% of the original in the healthy cell. These studies indicate that rigor-mediated depletion of cytoplasmic ATP in metabolically poisoned cardiomyocytes is considerably more extreme than hitherto indicated.

Full Text

The Full Text of this article is available as a PDF (572.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen D. G., Morris P. G., Orchard C. H., Pirolo J. S. A nuclear magnetic resonance study of metabolism in the ferret heart during hypoxia and inhibition of glycolysis. J Physiol. 1985 Apr;361:185–204. doi: 10.1113/jphysiol.1985.sp015640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen D. G., Orchard C. H. Measurements of intracellular calcium concentration in heart muscle: the effects of inotropic interventions and hypoxia. J Mol Cell Cardiol. 1984 Feb;16(2):117–128. doi: 10.1016/s0022-2828(84)80700-2. [DOI] [PubMed] [Google Scholar]
  3. Allen D. G., Orchard C. H. Myocardial contractile function during ischemia and hypoxia. Circ Res. 1987 Feb;60(2):153–168. doi: 10.1161/01.res.60.2.153. [DOI] [PubMed] [Google Scholar]
  4. Allshire A., Piper H. M., Cuthbertson K. S., Cobbold P. H. Cytosolic free Ca2+ in single rat heart cells during anoxia and reoxygenation. Biochem J. 1987 Jun 1;244(2):381–385. doi: 10.1042/bj2440381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Altschuld R. A., Wenger W. C., Lamka K. G., Kindig O. R., Capen C. C., Mizuhira V., Vander Heide R. S., Brierley G. P. Structural and functional properties of adult rat heart myocytes lysed with digitonin. J Biol Chem. 1985 Nov 15;260(26):14325–14334. [PubMed] [Google Scholar]
  6. Bowers K. C., Allshire A. P., Cobbold P. H. Bioluminescent measurement in single cardiomyocytes of sudden cytosolic ATP depletion coincident with rigor. J Mol Cell Cardiol. 1992 Mar;24(3):213–218. doi: 10.1016/0022-2828(92)93159-h. [DOI] [PubMed] [Google Scholar]
  7. Bowers K. C., Allshire A. P., Cobbold P. H. Continuous measurements of cytoplasmic ATP in single cardiomyocytes during simulation of the "oxygen paradox". Cardiovasc Res. 1993 Oct;27(10):1836–1839. doi: 10.1093/cvr/27.10.1836. [DOI] [PubMed] [Google Scholar]
  8. Cobbold P. H., Bourne P. K. Aequorin measurements of free calcium in single heart cells. 1984 Nov 29-Dec 5Nature. 312(5993):444–446. doi: 10.1038/312444a0. [DOI] [PubMed] [Google Scholar]
  9. DeLuca M., McElroy W. D. Two kinetically distinguishable ATP sites in firefly luciferase. Biochem Biophys Res Commun. 1984 Sep 17;123(2):764–770. doi: 10.1016/0006-291x(84)90295-x. [DOI] [PubMed] [Google Scholar]
  10. Deluca M. Firefly luciferase. Adv Enzymol Relat Areas Mol Biol. 1976;44:37–68. doi: 10.1002/9780470122891.ch2. [DOI] [PubMed] [Google Scholar]
  11. Dennis S. C., Gevers W., Opie L. H. Protons in ischemia: where do they come from; where do they go to? J Mol Cell Cardiol. 1991 Sep;23(9):1077–1086. doi: 10.1016/0022-2828(91)91642-5. [DOI] [PubMed] [Google Scholar]
  12. Devine J. H., Kutuzova G. D., Green V. A., Ugarova N. N., Baldwin T. O. Luciferase from the east European firefly Luciola mingrelica: cloning and nucleotide sequence of the cDNA, overexpression in Escherichia coli and purification of the enzyme. Biochim Biophys Acta. 1993 May 28;1173(2):121–132. doi: 10.1016/0167-4781(93)90172-a. [DOI] [PubMed] [Google Scholar]
  13. Eisner D. A., Elliott A. C., Smith G. L. The contribution of intracellular acidosis to the decline of developed pressure in ferret hearts exposed to cyanide. J Physiol. 1987 Oct;391:99–108. doi: 10.1113/jphysiol.1987.sp016728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Eisner D. A., Nichols C. G., O'Neill S. C., Smith G. L., Valdeolmillos M. The effects of metabolic inhibition on intracellular calcium and pH in isolated rat ventricular cells. J Physiol. 1989 Apr;411:393–418. doi: 10.1113/jphysiol.1989.sp017580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Elliott A. C., Smith G. L., Eisner D. A., Allen D. G. Metabolic changes during ischaemia and their role in contractile failure in isolated ferret hearts. J Physiol. 1992 Aug;454:467–490. doi: 10.1113/jphysiol.1992.sp019274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gandelman O., Allue I., Bowers K., Cobbold P. Cytoplasmic factors that affect the intensity and stability of bioluminescence from firefly luciferase in living mammalian cells. J Biolumin Chemilumin. 1994 Nov-Dec;9(6):363–371. doi: 10.1002/bio.1170090603. [DOI] [PubMed] [Google Scholar]
  17. Headrick J. P., Willis R. J. Cytosolic free magnesium in stimulated, hypoxic, and underperfused rat heart. J Mol Cell Cardiol. 1991 Sep;23(9):991–999. doi: 10.1016/0022-2828(91)91635-5. [DOI] [PubMed] [Google Scholar]
  18. Izumi K., Ito T., Fukazawa T. Effect of ATP concentration and pH on rigor tension development and dissociation of rigor complex in glycerinated rabbit psoas muscle fiber. Biochim Biophys Acta. 1981 Dec 18;678(3):364–372. doi: 10.1016/0304-4165(81)90116-1. [DOI] [PubMed] [Google Scholar]
  19. Koop A., Cobbold P. H. Continuous bioluminescent monitoring of cytoplasmic ATP in single isolated rat hepatocytes during metabolic poisoning. Biochem J. 1993 Oct 1;295(Pt 1):165–170. doi: 10.1042/bj2950165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Koop C. E. A conversation with C. Everett Koop, M.D. Bus Health. 1992 Mar;10(3):55-6, 65. [PubMed] [Google Scholar]
  21. Kupriyanov V. V., Lakomkin V. L., Korchazhkina O. V., Steinschneider AYa, Kapelko V. I., Saks V. A. Control of cardiac energy turnover by cytoplasmic phosphates: 31P-NMR study. Am J Physiol. 1991 Oct;261(4 Suppl):45–53. doi: 10.1152/ajplung.1991.261.4.L45. [DOI] [PubMed] [Google Scholar]
  22. Lagadic-Gossmann D., Buckler K. J., Vaughan-Jones R. D. Role of bicarbonate in pH recovery from intracellular acidosis in the guinea-pig ventricular myocyte. J Physiol. 1992 Dec;458:361–384. doi: 10.1113/jphysiol.1992.sp019422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McClellan G., Weisberg A., Winegrad S. Energy transport from mitochondria to myofibril by a creatine phosphate shuttle in cardiac cells. Am J Physiol. 1983 Nov;245(5 Pt 1):C423–C427. doi: 10.1152/ajpcell.1983.245.5.C423. [DOI] [PubMed] [Google Scholar]
  24. Neubauer S., Newell J. B., Ingwall J. S. Metabolic consequences and predictability of ventricular fibrillation in hypoxia. A 31P- and 23Na-nuclear magnetic resonance study of the isolated rat heart. Circulation. 1992 Jul;86(1):302–310. doi: 10.1161/01.cir.86.1.302. [DOI] [PubMed] [Google Scholar]
  25. Ng L. L., Davies J. E., Quinn P. Intracellular pH regulation in isolated myocytes from adult rat heart in HCO3(-)-containing and HCO3(-)-free media. Clin Sci (Lond) 1993 Feb;84(2):133–139. doi: 10.1042/cs0840133. [DOI] [PubMed] [Google Scholar]
  26. Nichols C. G., Lederer W. J. The role of ATP in energy-deprivation contractures in unloaded rat ventricular myocytes. Can J Physiol Pharmacol. 1990 Feb;68(2):183–194. doi: 10.1139/y90-029. [DOI] [PubMed] [Google Scholar]
  27. Powell T., Twist V. W. A rapid technique for the isolation and purification of adult cardiac muscle cells having respiratory control and a tolerance to calcium. Biochem Biophys Res Commun. 1976 Sep 7;72(1):327–333. doi: 10.1016/0006-291x(76)90997-9. [DOI] [PubMed] [Google Scholar]
  28. SELIGER H. H., McELROY W. D. Spectral emission and quantum yield of firefly bioluminescence. Arch Biochem Biophys. 1960 May;88:136–141. doi: 10.1016/0003-9861(60)90208-3. [DOI] [PubMed] [Google Scholar]
  29. Siegmund B., Koop A., Klietz T., Schwartz P., Piper H. M. Sarcolemmal integrity and metabolic competence of cardiomyocytes under anoxia-reoxygenation. Am J Physiol. 1990 Feb;258(2 Pt 2):H285–H291. doi: 10.1152/ajpheart.1990.258.2.H285. [DOI] [PubMed] [Google Scholar]
  30. Smith G. L., Steele D. S. Effects of pH and inorganic phosphate on rigor tension in chemically skinned rat ventricular trabeculae. J Physiol. 1994 Aug 1;478(Pt 3):505–512. doi: 10.1113/jphysiol.1994.sp020269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stewart L. C., Deslauriers R., Kupriyanov V. V. Relationships between cytosolic [ATP], [ATP]/[ADP] and ionic fluxes in the perfused rat heart: A 31P, 23Na and 87Rb NMR study. J Mol Cell Cardiol. 1994 Oct;26(10):1377–1392. doi: 10.1006/jmcc.1994.1156. [DOI] [PubMed] [Google Scholar]
  32. Ventura-Clapier R., Veksler V. Myocardial ischemic contracture. Metabolites affect rigor tension development and stiffness. Circ Res. 1994 May;74(5):920–929. doi: 10.1161/01.res.74.5.920. [DOI] [PubMed] [Google Scholar]
  33. Weissberg P. L., Little P. J., Cragoe E. J., Jr, Bobik A. The pH of spontaneously beating cultured rat heart cells is regulated by an ATP-calmodulin-dependent Na+/H+ antiport. Circ Res. 1989 Apr;64(4):676–685. doi: 10.1161/01.res.64.4.676. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES