Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Oct 15;319(Pt 2):521–527. doi: 10.1042/bj3190521

Isoforms of endoplasmic reticulum Ca(2+)-ATPase are differentially expressed in normal and diabetic islets of Langerhans.

A Váradi 1, E Molnár 1, C G Ostenson 1, S J Ashcroft 1
PMCID: PMC1217799  PMID: 8912690

Abstract

Glucose-dependent sequestration of Ca2+ into endoplasmic reticulum and its subsequent release play an important role in the control of intracellular Ca2+ concentration, which regulates insulin secretion in pancreatic beta-cells. The active uptake of cytosolic Ca2+ into endoplasmic reticulum is mediated by sarco-(endo)plasmic reticulum Ca(2+)-ATPases (SERCAs). We found, using RT-PCR with isoform-specific primers, that SERCA 2 and SERCA 3 mRNAs are co-expressed in human and rat islets of Langerhans and in the RINm5F beta-cell line. Immunochemical analysis also revealed the existence of two SERCA proteins with molecular masses of 110 and 115 kDa in beta-cell membranes. The 115 kDa protein was identified as SERCA 2b by its reaction with an isoform-specific antibody and the 110 kDa protein most probably corresponds to SERCA 3. The presence of two functionally different SERCA isoforms raises the possibility that they are located in distinct Ca2+ stores. There is evidence that altered Ca2+ handling in the beta-cell may contribute to the decreased insulin secretion seen in non-insulin dependent diabetes mellitus (NIDDM). We therefore investigated SERCA 2 and SERCA 3 mRNA expression by quantitative RT-PCR in islets prepared from Goto-Kakizaki (GK) rats, a non-obese spontaneous model of NIDDM. We found a significant reduction (about 68%) in SERCA 3 isoform expression. Since SERCA 2 expression was not significantly reduced, these genes are independently regulated and probably play distinct roles in islets of Langerhans. The marked decrease of SERCA 3 expression may constitute a defect in Ca2+ signalling in GK rat islets which could be a component of NIDDM.

Full Text

The Full Text of this article is available as a PDF (345.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anger M., Samuel J. L., Marotte F., Wuytack F., Rappaport L., Lompré A. M. In situ mRNA distribution of sarco(endo)plasmic reticulum Ca(2+)-ATPase isoforms during ontogeny in the rat. J Mol Cell Cardiol. 1994 Apr;26(4):539–550. doi: 10.1006/jmcc.1994.1064. [DOI] [PubMed] [Google Scholar]
  2. Ashcroft F. M., Rorsman P. Electrophysiology of the pancreatic beta-cell. Prog Biophys Mol Biol. 1989;54(2):87–143. doi: 10.1016/0079-6107(89)90013-8. [DOI] [PubMed] [Google Scholar]
  3. Ashcroft S. J., Hammonds P., Harrison D. E. Insulin secretory responses of a clonal cell line of simian virus 40-transformed B cells. Diabetologia. 1986 Oct;29(10):727–733. doi: 10.1007/BF00870283. [DOI] [PubMed] [Google Scholar]
  4. Benedeczky I., Molnár E., Somogyi P. The cisternal organelle as a Ca(2+)-storing compartment associated with GABAergic synapses in the axon initial segment of hippocampal pyramidal neurones. Exp Brain Res. 1994;101(2):216–230. doi: 10.1007/BF00228742. [DOI] [PubMed] [Google Scholar]
  5. Bobe R., Bredoux R., Wuytack F., Quarck R., Kovàcs T., Papp B., Corvazier E., Magnier C., Enouf J. The rat platelet 97-kDa Ca2+ATPase isoform is the sarcoendoplasmic reticulum Ca2+ATPase 3 protein. J Biol Chem. 1994 Jan 14;269(2):1417–1424. [PubMed] [Google Scholar]
  6. Brandl C. J., deLeon S., Martin D. R., MacLennan D. H. Adult forms of the Ca2+ATPase of sarcoplasmic reticulum. Expression in developing skeletal muscle. J Biol Chem. 1987 Mar 15;262(8):3768–3774. [PubMed] [Google Scholar]
  7. Burk S. E., Lytton J., MacLennan D. H., Shull G. E. cDNA cloning, functional expression, and mRNA tissue distribution of a third organellar Ca2+ pump. J Biol Chem. 1989 Nov 5;264(31):18561–18568. [PubMed] [Google Scholar]
  8. Campbell A. M., Kessler P. D., Sagara Y., Inesi G., Fambrough D. M. Nucleotide sequences of avian cardiac and brain SR/ER Ca(2+)-ATPases and functional comparisons with fast twitch Ca(2+)-ATPase. Calcium affinities and inhibitor effects. J Biol Chem. 1991 Aug 25;266(24):16050–16055. [PubMed] [Google Scholar]
  9. Delfino V. D., Gray D. W., Leow C. K., Shimizu S., Ferguson D. J., Morris P. J. A comparison of four solutions for cold storage of pancreatic islets. Transplantation. 1993 Dec;56(6):1325–1330. doi: 10.1097/00007890-199312000-00007. [DOI] [PubMed] [Google Scholar]
  10. Dormer R. L., Capurro D. E., Morris R., Webb R. Demonstration of two isoforms of the SERCA-2b type Ca2+,Mg(2+)-ATPase in pancreatic endoplasmic reticulum. Biochim Biophys Acta. 1993 Nov 7;1152(2):225–230. doi: 10.1016/0005-2736(93)90253-v. [DOI] [PubMed] [Google Scholar]
  11. Eggermont J. A., Wuytack F., De Jaegere S., Nelles L., Casteels R. Evidence for two isoforms of the endoplasmic-reticulum Ca2+ pump in pig smooth muscle. Biochem J. 1989 Jun 15;260(3):757–761. doi: 10.1042/bj2600757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Engelender S., Wolosker H., de Meis L. The Ca(2+)-ATPase isoforms of platelets are located in distinct functional Ca2+ pools and are uncoupled by a mechanism different from that of skeletal muscle Ca(2+)-ATPase. J Biol Chem. 1995 Sep 8;270(36):21050–21055. doi: 10.1074/jbc.270.36.21050. [DOI] [PubMed] [Google Scholar]
  13. Giroix M. H., Sener A., Bailbe D., Leclercq-Meyer V., Portha B., Malaisse W. J. Metabolic, ionic, and secretory response to D-glucose in islets from rats with acquired or inherited non-insulin-dependent diabetes. Biochem Med Metab Biol. 1993 Dec;50(3):301–321. doi: 10.1006/bmmb.1993.1072. [DOI] [PubMed] [Google Scholar]
  14. Giroix M. H., Vesco L., Portha B. Functional and metabolic perturbations in isolated pancreatic islets from the GK rat, a genetic model of noninsulin-dependent diabetes. Endocrinology. 1993 Feb;132(2):815–822. doi: 10.1210/endo.132.2.8425496. [DOI] [PubMed] [Google Scholar]
  15. Gray D. W., McShane P., Grant A., Morris P. J. A method for isolation of islets of Langerhans from the human pancreas. Diabetes. 1984 Nov;33(11):1055–1061. doi: 10.2337/diab.33.11.1055. [DOI] [PubMed] [Google Scholar]
  16. Gunteski-Hamblin A. M., Greeb J., Shull G. E. A novel Ca2+ pump expressed in brain, kidney, and stomach is encoded by an alternative transcript of the slow-twitch muscle sarcoplasmic reticulum Ca-ATPase gene. Identification of cDNAs encoding Ca2+ and other cation-transporting ATPases using an oligonucleotide probe derived from the ATP-binding site. J Biol Chem. 1988 Oct 15;263(29):15032–15040. [PubMed] [Google Scholar]
  17. Jeremy J. Y., Gill J., Mikhialidis D. P. Diabetes mellitus: a disease of abnormal cellular calcium metabolism? Am J Med. 1995 Aug;99(2):222–224. doi: 10.1016/s0002-9343(99)80146-6. [DOI] [PubMed] [Google Scholar]
  18. Kimura K., Toyota T., Kakizaki M., Kudo M., Takebe K., Goto Y. Impaired insulin secretion in the spontaneous diabetes rats. Tohoku J Exp Med. 1982 Aug;137(4):453–459. doi: 10.1620/tjem.137.453. [DOI] [PubMed] [Google Scholar]
  19. Korczak B., Zarain-Herzberg A., Brandl C. J., Ingles C. J., Green N. M., MacLennan D. H. Structure of the rabbit fast-twitch skeletal muscle Ca2+-ATPase gene. J Biol Chem. 1988 Apr 5;263(10):4813–4819. [PubMed] [Google Scholar]
  20. Kovács T., Corvazier E., Papp B., Magnier C., Bredoux R., Enyedi A., Sarkadi B., Enouf J. Controlled proteolysis of Ca(2+)-ATPases in human platelet and non-muscle cell membrane vesicles. Evidence for a multi-sarco/endoplasmic reticulum Ca(2+)-ATPase system. J Biol Chem. 1994 Feb 25;269(8):6177–6184. [PubMed] [Google Scholar]
  21. Krenács T., Molnár E., Dobó E., Dux L. Fibre typing using sarcoplasmic reticulum Ca2+-ATPase and myoglobin immunohistochemistry in rat gastrocnemius muscle. Histochem J. 1989 Mar;21(3):145–155. doi: 10.1007/BF01007489. [DOI] [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Levy J., Gavin J. R., 3rd, Sowers J. R. Diabetes mellitus: a disease of abnormal cellular calcium metabolism? Am J Med. 1994 Mar;96(3):260–273. doi: 10.1016/0002-9343(94)90152-x. [DOI] [PubMed] [Google Scholar]
  24. Lompre A. M., de la Bastie D., Boheler K. R., Schwartz K. Characterization and expression of the rat heart sarcoplasmic reticulum Ca2+-ATPase mRNA. FEBS Lett. 1989 May 22;249(1):35–41. doi: 10.1016/0014-5793(89)80010-9. [DOI] [PubMed] [Google Scholar]
  25. Lytton J., MacLennan D. H. Molecular cloning of cDNAs from human kidney coding for two alternatively spliced products of the cardiac Ca2+-ATPase gene. J Biol Chem. 1988 Oct 15;263(29):15024–15031. [PubMed] [Google Scholar]
  26. Lytton J., Westlin M., Burk S. E., Shull G. E., MacLennan D. H. Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. J Biol Chem. 1992 Jul 15;267(20):14483–14489. [PubMed] [Google Scholar]
  27. Lytton J., Zarain-Herzberg A., Periasamy M., MacLennan D. H. Molecular cloning of the mammalian smooth muscle sarco(endo)plasmic reticulum Ca2+-ATPase. J Biol Chem. 1989 Apr 25;264(12):7059–7065. [PubMed] [Google Scholar]
  28. Magnier C., Bredoux R., Kovacs T., Quarck R., Papp B., Corvazier E., de Gunzburg J., Enouf J. Correlated expression of the 97 kDa sarcoendoplasmic reticulum Ca(2+)-ATPase and Rap1B in platelets and various cell lines. Biochem J. 1994 Jan 15;297(Pt 2):343–350. doi: 10.1042/bj2970343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Molnar E., Seidler N. W., Jona I., Martonosi A. N. The binding of monoclonal and polyclonal antibodies to the Ca2(+)-ATPase of sarcoplasmic reticulum: effects on interactions between ATPase molecules. Biochim Biophys Acta. 1990 Apr 13;1023(2):147–167. doi: 10.1016/0005-2736(90)90410-p. [DOI] [PubMed] [Google Scholar]
  30. Molnar E., Varga S., Jona I., Seidler N. W., Martonosi A. Immunological relatedness of the sarcoplasmic reticulum Ca(2+)-ATPase and the Na+,K(+)-ATPase. Biochim Biophys Acta. 1992 Jan 31;1103(2):281–295. doi: 10.1016/0005-2736(92)90098-7. [DOI] [PubMed] [Google Scholar]
  31. Nudel U., Zakut R., Shani M., Neuman S., Levy Z., Yaffe D. The nucleotide sequence of the rat cytoplasmic beta-actin gene. Nucleic Acids Res. 1983 Mar 25;11(6):1759–1771. doi: 10.1093/nar/11.6.1759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Okorodudu A. O., Adegboyega P. A., Scholz C. I. Intracellular calcium and hydrogen ions in diabetes mellitus. Ann Clin Lab Sci. 1995 Sep-Oct;25(5):394–401. [PubMed] [Google Scholar]
  33. Prentki M., Matschinsky F. M. Ca2+, cAMP, and phospholipid-derived messengers in coupling mechanisms of insulin secretion. Physiol Rev. 1987 Oct;67(4):1185–1248. doi: 10.1152/physrev.1987.67.4.1185. [DOI] [PubMed] [Google Scholar]
  34. Ribar T. J., Jan C. R., Augustine G. J., Means A. R. Defective glycolysis and calcium signaling underlie impaired insulin secretion in a transgenic mouse. J Biol Chem. 1995 Dec 1;270(48):28688–28695. doi: 10.1074/jbc.270.48.28688. [DOI] [PubMed] [Google Scholar]
  35. Roe M. W., Mertz R. J., Lancaster M. E., Worley J. F., 3rd, Dukes I. D. Thapsigargin inhibits the glucose-induced decrease of intracellular Ca2+ in mouse islets of Langerhans. Am J Physiol. 1994 Jun;266(6 Pt 1):E852–E862. doi: 10.1152/ajpendo.1994.266.6.E852. [DOI] [PubMed] [Google Scholar]
  36. Roe M. W., Philipson L. H., Frangakis C. J., Kuznetsov A., Mertz R. J., Lancaster M. E., Spencer B., Worley J. F., 3rd, Dukes I. D. Defective glucose-dependent endoplasmic reticulum Ca2+ sequestration in diabetic mouse islets of Langerhans. J Biol Chem. 1994 Jul 15;269(28):18279–18282. [PubMed] [Google Scholar]
  37. Roe M. W., Worley J. F., 3rd, Tokuyama Y., Philipson L. H., Sturis J., Tang J., Dukes I. D., Bell G. I., Polonsky K. S. NIDDM is associated with loss of pancreatic beta-cell L-type Ca2+ channel activity. Am J Physiol. 1996 Jan;270(1 Pt 1):E133–E140. doi: 10.1152/ajpendo.1996.270.1.E133. [DOI] [PubMed] [Google Scholar]
  38. Sarkadi B., Enyedi A., Penniston J. T., Verma A. K., Dux L., Molnár E., Gárdos G. Characterization of membrane calcium pumps by simultaneous immunoblotting and 32P radiography. Biochim Biophys Acta. 1988 Mar 22;939(1):40–46. doi: 10.1016/0005-2736(88)90044-2. [DOI] [PubMed] [Google Scholar]
  39. Siegel E. G., Wollheim C. B., Sharp G. W., Herberg L., Renold A. E. Defective calcium handling and insulin release in islets from diabetic Chinese hamsters. Biochem J. 1979 Apr 15;180(1):233–236. doi: 10.1042/bj1800233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Siegel E. G., Wollheim C. B., Sharp G. W., Herberg L., Renold A. E. Role of Ca2+ in impaired insulin release from islets of diabetic (C57BL/KsJ-db/db) mice. Am J Physiol. 1980 Aug;239(2):E132–E138. doi: 10.1152/ajpendo.1980.239.2.E132. [DOI] [PubMed] [Google Scholar]
  41. Sutton R., Hammonds P., Hughes D., Clark A., Gray D. W., Morris P. J. Human pancreatic islet isolation with increased incubation temperatures and variable density gradients. Transplant Proc. 1990 Apr;22(2):758–759. [PubMed] [Google Scholar]
  42. Sutton R., Peters M., McShane P., Gray D. W., Morris P. J. Isolation of rat pancreatic islets by ductal injection of collagenase. Transplantation. 1986 Dec;42(6):689–691. doi: 10.1097/00007890-198612000-00022. [DOI] [PubMed] [Google Scholar]
  43. Tsuji K., Taminato T., Ishida H., Okamoto Y., Tsuura Y., Kato S., Kurose T., Okada Y., Imura H., Seino Y. Selective impairment of the cytoplasmic Ca2+ response to glucose in pancreatic beta cells of streptozocin-induced non-insulin-dependent diabetic rats. Metabolism. 1993 Nov;42(11):1424–1428. doi: 10.1016/0026-0495(93)90193-r. [DOI] [PubMed] [Google Scholar]
  44. Váradi A., Molnár E., Ashcroft S. J. A unique combination of plasma membrane Ca2+-ATPase isoforms is expressed in islets of Langerhans and pancreatic beta-cell lines. Biochem J. 1996 Mar 1;314(Pt 2):663–669. doi: 10.1042/bj3140663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Váradi A., Molnár E., Ashcroft S. J. Characterisation of endoplasmic reticulum and plasma membrane Ca(2+)-ATPases in pancreatic beta-cells and in islets of Langerhans. Biochim Biophys Acta. 1995 May 24;1236(1):119–127. doi: 10.1016/0005-2736(95)00103-a. [DOI] [PubMed] [Google Scholar]
  46. Worley J. F., 3rd, McIntyre M. S., Spencer B., Mertz R. J., Roe M. W., Dukes I. D. Endoplasmic reticulum calcium store regulates membrane potential in mouse islet beta-cells. J Biol Chem. 1994 May 20;269(20):14359–14362. [PubMed] [Google Scholar]
  47. Wu K. D., Lee W. S., Wey J., Bungard D., Lytton J. Localization and quantification of endoplasmic reticulum Ca(2+)-ATPase isoform transcripts. Am J Physiol. 1995 Sep;269(3 Pt 1):C775–C784. doi: 10.1152/ajpcell.1995.269.3.C775. [DOI] [PubMed] [Google Scholar]
  48. Wu K. D., Lytton J. Molecular cloning and quantification of sarcoplasmic reticulum Ca(2+)-ATPase isoforms in rat muscles. Am J Physiol. 1993 Feb;264(2 Pt 1):C333–C341. doi: 10.1152/ajpcell.1993.264.2.C333. [DOI] [PubMed] [Google Scholar]
  49. Wuytack F., Dode L., Baba-Aissa F., Raeymaekers L. The SERCA3-type of organellar Ca2+ pumps. Biosci Rep. 1995 Oct;15(5):299–306. doi: 10.1007/BF01788362. [DOI] [PubMed] [Google Scholar]
  50. Wuytack F., Papp B., Verboomen H., Raeymaekers L., Dode L., Bobe R., Enouf J., Bokkala S., Authi K. S., Casteels R. A sarco/endoplasmic reticulum Ca(2+)-ATPase 3-type Ca2+ pump is expressed in platelets, in lymphoid cells, and in mast cells. J Biol Chem. 1994 Jan 14;269(2):1410–1416. [PubMed] [Google Scholar]
  51. Zemel M. B. Insulin resistance vs. hyperinsulinemia in hypertension: insulin regulation of Ca2+ transport and Ca(2+)-regulation of insulin sensitivity. J Nutr. 1995 Jun;125(6 Suppl):1738S–1743S. doi: 10.1093/jn/125.suppl_6.1738S. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES