Abstract
In an ongoing study of the mechanisms of calpain catalysis and Ca(2+)-induced activation, the effects of Asp-104-->Ser and Pro-287-->Ser large subunit mutations on m-calpain activity, the pH-activity profile, Ca(2+)-sensitivity, and autolysis were measured. The importance of these positions was suggested by sequence comparisons between the calpain and papain families of cysteine proteinases. Asp-104 is adjacent to the active-site Cys-105, and Pro-287 is adjacent to the active-site Asn-286 and probably to the active-site His-262; both Asp-104 and Pro-287 are absolutely conserved in the known calpains, but are replaced by highly conserved serine residues in the papains. The single mutants had approx. 10-15% of wild-type activity, due mainly to a decrease in kcat, since Km was only slightly increased. The Pro-287-->Ser mutation appeared to cause a local perturbation of the catalytic Cys-105/His-262 catalytic ion pair, reducing its efficiency without major effect on the conformation and stability of the enzyme. The Asp-104-->Ser mutation caused a marked narrowing of the pH-activity curve, a 9-fold increase in Ca2+ requirement, and an acceleration of autolysis, when compared with the wild-type enzyme. The results indicated that Asp-104 alters the nature of its interaction with the catalytic ion pair during Ca(2+)-induced conformational change in calpain. This interaction may be direct or indirect, but is important in activation of the enzyme.
Full Text
The Full Text of this article is available as a PDF (490.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arthur J. S., Gauthier S., Elce J. S. Active site residues in m-calpain: identification by site-directed mutagenesis. FEBS Lett. 1995 Jul 24;368(3):397–400. doi: 10.1016/0014-5793(95)00691-2. [DOI] [PubMed] [Google Scholar]
- Berti P. J., Storer A. C. Alignment/phylogeny of the papain superfamily of cysteine proteases. J Mol Biol. 1995 Feb 17;246(2):273–283. doi: 10.1006/jmbi.1994.0083. [DOI] [PubMed] [Google Scholar]
- Brömme D., Bonneau P. R., Purisima E., Lachance P., Hajnik S., Thomas D. Y., Storer A. C. Contribution to activity of histidine-aromatic, amide-aromatic, and aromatic-aromatic interactions in the extended catalytic site of cysteine proteinases. Biochemistry. 1996 Apr 2;35(13):3970–3979. doi: 10.1021/bi9523015. [DOI] [PubMed] [Google Scholar]
- Crawford C., Mason R. W., Wikstrom P., Shaw E. The design of peptidyldiazomethane inhibitors to distinguish between the cysteine proteinases calpain II, cathepsin L and cathepsin B. Biochem J. 1988 Aug 1;253(3):751–758. doi: 10.1042/bj2530751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Croall D. E., DeMartino G. N. Calcium-activated neutral protease (calpain) system: structure, function, and regulation. Physiol Rev. 1991 Jul;71(3):813–847. doi: 10.1152/physrev.1991.71.3.813. [DOI] [PubMed] [Google Scholar]
- Elce J. S., Hegadorn C., Gauthier S., Vince J. W., Davies P. L. Recombinant calpain II: improved expression systems and production of a C105A active-site mutant for crystallography. Protein Eng. 1995 Aug;8(8):843–848. doi: 10.1093/protein/8.8.843. [DOI] [PubMed] [Google Scholar]
- Emori Y., Kawasaki H., Imajoh S., Kawashima S., Suzuki K. Isolation and sequence analysis of cDNA clones for the small subunit of rabbit calcium-dependent protease. J Biol Chem. 1986 Jul 15;261(20):9472–9476. [PubMed] [Google Scholar]
- Goll D. E., Thompson V. F., Taylor R. G., Zalewska T. Is calpain activity regulated by membranes and autolysis or by calcium and calpastatin? Bioessays. 1992 Aug;14(8):549–556. doi: 10.1002/bies.950140810. [DOI] [PubMed] [Google Scholar]
- Graham-Siegenthaler K., Gauthier S., Davies P. L., Elce J. S. Active recombinant rat calpain II. Bacterially produced large and small subunits associate both in vivo and in vitro. J Biol Chem. 1994 Dec 2;269(48):30457–30460. [PubMed] [Google Scholar]
- Jia Z., Hasnain S., Hirama T., Lee X., Mort J. S., To R., Huber C. P. Crystal structures of recombinant rat cathepsin B and a cathepsin B-inhibitor complex. Implications for structure-based inhibitor design. J Biol Chem. 1995 Mar 10;270(10):5527–5533. doi: 10.1074/jbc.270.10.5527. [DOI] [PubMed] [Google Scholar]
- Lewis S. D., Johnson F. A., Shafer J. A. Potentiometric determination of ionizations at the active site of papain. Biochemistry. 1976 Nov 16;15(23):5009–5017. doi: 10.1021/bi00668a010. [DOI] [PubMed] [Google Scholar]
- Mellor G. W., Patel M., Thomas E. W., Brocklehurst K. Clarification of the pH-dependent kinetic behaviour of papain by using reactivity probes and analysis of alkylation and catalysed acylation reactions in terms of multihydronic state models: implications for electrostatics calculations and interpretation of the consequences of site-specific mutations such as Asp-158-Asn and Asp-158-Glu. Biochem J. 1993 Aug 15;294(Pt 1):201–210. doi: 10.1042/bj2940201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mellor G. W., Sreedharan S. K., Kowlessur D., Thomas E. W., Brocklehurst K. Catalytic-site characteristics of the porcine calpain II 80 kDa/18 kDa heterodimer revealed by selective reaction of its essential thiol group with two-hydronic-state time-dependent inhibitors: evidence for a catalytic site Cys/His interactive system and an ionizing modulatory group. Biochem J. 1993 Feb 15;290(Pt 1):75–83. doi: 10.1042/bj2900075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mellor G. W., Thomas E. W., Topham C. M., Brocklehurst K. Ionization characteristics of the Cys-25/His-159 interactive system and of the modulatory group of papain: resolution of ambiguity by electronic perturbation of the quasi-2-mercaptopyridine leaving group in a new pyrimidyl disulphide reactivity probe. Biochem J. 1993 Feb 15;290(Pt 1):289–296. doi: 10.1042/bj2900289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ménard R., Khouri H. E., Plouffe C., Dupras R., Ripoll D., Vernet T., Tessier D. C., Lalberté F., Thomas D. Y., Storer A. C. A protein engineering study of the role of aspartate 158 in the catalytic mechanism of papain. Biochemistry. 1990 Jul 17;29(28):6706–6713. doi: 10.1021/bi00480a021. [DOI] [PubMed] [Google Scholar]
- Ménard R., Khouri H. E., Plouffe C., Laflamme P., Dupras R., Vernet T., Tessier D. C., Thomas D. Y., Storer A. C. Importance of hydrogen-bonding interactions involving the side chain of Asp158 in the catalytic mechanism of papain. Biochemistry. 1991 Jun 4;30(22):5531–5538. doi: 10.1021/bi00236a028. [DOI] [PubMed] [Google Scholar]
- Ménard R., Plouffe C., Khouri H. E., Dupras R., Tessier D. C., Vernet T., Thomas D. Y., Storer A. C. Removal of an inter-domain hydrogen bond through site-directed mutagenesis: role of serine 176 in the mechanism of papain. Protein Eng. 1991 Feb;4(3):307–311. doi: 10.1093/protein/4.3.307. [DOI] [PubMed] [Google Scholar]
- Ménard R., Plouffe C., Laflamme P., Vernet T., Tessier D. C., Thomas D. Y., Storer A. C. Modification of the electrostatic environment is tolerated in the oxyanion hole of the cysteine protease papain. Biochemistry. 1995 Jan 17;34(2):464–471. doi: 10.1021/bi00002a010. [DOI] [PubMed] [Google Scholar]
- Ohno S., Emori Y., Imajoh S., Kawasaki H., Kisaragi M., Suzuki K. Evolutionary origin of a calcium-dependent protease by fusion of genes for a thiol protease and a calcium-binding protein? Nature. 1984 Dec 6;312(5994):566–570. doi: 10.1038/312566a0. [DOI] [PubMed] [Google Scholar]
- Rawlings N. D., Barrett A. J. Families of cysteine peptidases. Methods Enzymol. 1994;244:461–486. doi: 10.1016/0076-6879(94)44034-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sorimachi H., Saido T. C., Suzuki K. New era of calpain research. Discovery of tissue-specific calpains. FEBS Lett. 1994 Apr 18;343(1):1–5. doi: 10.1016/0014-5793(94)80595-4. [DOI] [PubMed] [Google Scholar]
- Sorimachi H., Suzuki K. Sequence comparison among muscle-specific calpain, p94, and calpain subunits. Biochim Biophys Acta. 1992 Nov 10;1160(1):55–62. doi: 10.1016/0167-4838(92)90037-e. [DOI] [PubMed] [Google Scholar]
- Suzuki K., Hayashi H., Hayashi T., Iwai K. Amino acid sequence around the active site cysteine residue of calcium-activated neutral protease (CANP). FEBS Lett. 1983 Feb 7;152(1):67–70. doi: 10.1016/0014-5793(83)80483-9. [DOI] [PubMed] [Google Scholar]
- Thomas M. P., Topham C. M., Kowlessur D., Mellor G. W., Thomas E. W., Whitford D., Brocklehurst K. Structure of chymopapain M the late-eluted chymopapain deduced by comparative modelling techniques and active-centre characteristics determined by pH-dependent kinetics of catalysis and reactions with time-dependent inhibitors: the Cys-25/His-159 ion-pair is insufficient for catalytic competence in both chymopapain M and papain. Biochem J. 1994 Jun 15;300(Pt 3):805–820. doi: 10.1042/bj3000805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vernet T., Tessier D. C., Chatellier J., Plouffe C., Lee T. S., Thomas D. Y., Storer A. C., Ménard R. Structural and functional roles of asparagine 175 in the cysteine protease papain. J Biol Chem. 1995 Jul 14;270(28):16645–16652. doi: 10.1074/jbc.270.28.16645. [DOI] [PubMed] [Google Scholar]
