Abstract
The exposure of 3T3 cells to a medium made hypertonic by the addition of NaCl induced activation of a heat-shock transcription factor (HSF). This activation, as monitored by gel-mobility-shift assays, occurred within 10 min of hypertonic shock and was dose-dependent in relation to the osmotic strength of the medium up to 0.7 osM. Competition analysis indicated that the effect of hypertonic shock on HSF binding activity was specific. The magnitude of the heat-shock element (HSE)-HSF binding induced by incubating the cells in a 0.7 osM medium was comparable in intensity and time course with that induced by a 44 degrees C heat shock. Following removal of the stressors, the decrease in HSF-HSE binding was more rapid in hypertonicity-shocked than in heat-shocked cells. Treatment of the cells with cycloheximide did not inhibit HSF-HSE binding, indicating that the activation was independent of new protein synthesis. By using a specifically directed polyclonal serum, HSF1 was identified as the transcription factor involved in the hypertonicity-induced activation. HSF was also activated when a membrane-impermeable osmolyte such as sucrose was used to increase the osmolarity of the medium. However, no HSF-HSE binding was observed after addition of glycerol (a freely membrane-permeable osmolyte) in excess. There was a temporal relationship between the hypertonicity-induced volume decrease, the increase in the intracellular K+ concentration and the induction of HSF-HSE binding. In contrast, an increase in the intracellular Na+ concentration was not required to induce HSF-HSE binding. However, unlike the heat-shock response, the activation of HSF by hypertonic shock did not lead to elongation of the RNA transcript of heat-shock protein 70.
Full Text
The Full Text of this article is available as a PDF (290.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ananthan J., Goldberg A. L., Voellmy R. Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science. 1986 Apr 25;232(4749):522–524. doi: 10.1126/science.3083508. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Bruce J. L., Price B. D., Coleman C. N., Calderwood S. K. Oxidative injury rapidly activates the heat shock transcription factor but fails to increase levels of heat shock proteins. Cancer Res. 1993 Jan 1;53(1):12–15. [PubMed] [Google Scholar]
- Burg M. B., Garcia-Perez A. How tonicity regulates gene expression. J Am Soc Nephrol. 1992 Aug;3(2):121–127. doi: 10.1681/ASN.V32121. [DOI] [PubMed] [Google Scholar]
- Burg M. B. Molecular basis of osmotic regulation. Am J Physiol. 1995 Jun;268(6 Pt 2):F983–F996. doi: 10.1152/ajprenal.1995.268.6.F983. [DOI] [PubMed] [Google Scholar]
- Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
- Cohen D. M., Wasserman J. C., Gullans S. R. Immediate early gene and HSP70 expression in hyperosmotic stress in MDCK cells. Am J Physiol. 1991 Oct;261(4 Pt 1):C594–C601. doi: 10.1152/ajpcell.1991.261.4.C594. [DOI] [PubMed] [Google Scholar]
- Cotto J. J., Kline M., Morimoto R. I. Activation of heat shock factor 1 DNA binding precedes stress-induced serine phosphorylation. Evidence for a multistep pathway of regulation. J Biol Chem. 1996 Feb 16;271(7):3355–3358. doi: 10.1074/jbc.271.7.3355. [DOI] [PubMed] [Google Scholar]
- Edington B. V., Whelan S. A., Hightower L. E. Inhibition of heat shock (stress) protein induction by deuterium oxide and glycerol: additional support for the abnormal protein hypothesis of induction. J Cell Physiol. 1989 May;139(2):219–228. doi: 10.1002/jcp.1041390202. [DOI] [PubMed] [Google Scholar]
- Garcia-Perez A., Burg M. B. Renal medullary organic osmolytes. Physiol Rev. 1991 Oct;71(4):1081–1115. doi: 10.1152/physrev.1991.71.4.1081. [DOI] [PubMed] [Google Scholar]
- Garland A., Jordan J. E., Necheles J., Alger L. E., Scully M. M., Miller R. J., Ray D. W., White S. R., Solway J. Hypertonicity, but not hypothermia, elicits substance P release from rat C-fiber neurons in primary culture. J Clin Invest. 1995 May;95(5):2359–2366. doi: 10.1172/JCI117928. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giardina C., Lis J. T. Sodium salicylate and yeast heat shock gene transcription. J Biol Chem. 1995 May 5;270(18):10369–10372. doi: 10.1074/jbc.270.18.10369. [DOI] [PubMed] [Google Scholar]
- Hoffmann E. K., Dunham P. B. Membrane mechanisms and intracellular signalling in cell volume regulation. Int Rev Cytol. 1995;161:173–262. doi: 10.1016/s0074-7696(08)62498-5. [DOI] [PubMed] [Google Scholar]
- Hoffmann E. K., Simonsen L. O. Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol Rev. 1989 Apr;69(2):315–382. doi: 10.1152/physrev.1989.69.2.315. [DOI] [PubMed] [Google Scholar]
- Huang L. E., Caruccio L., Liu A. Y., Chen K. Y. Rapid activation of the heat shock transcription factor, HSF1, by hypo-osmotic stress in mammalian cells. Biochem J. 1995 Apr 15;307(Pt 2):347–352. doi: 10.1042/bj3070347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunt C., Morimoto R. I. Conserved features of eukaryotic hsp70 genes revealed by comparison with the nucleotide sequence of human hsp70. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6455–6459. doi: 10.1073/pnas.82.19.6455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jurivich D. A., Pachetti C., Qiu L., Welk J. F. Salicylate triggers heat shock factor differently than heat. J Biol Chem. 1995 Oct 13;270(41):24489–24495. doi: 10.1074/jbc.270.41.24489. [DOI] [PubMed] [Google Scholar]
- Jurivich D. A., Sistonen L., Kroes R. A., Morimoto R. I. Effect of sodium salicylate on the human heat shock response. Science. 1992 Mar 6;255(5049):1243–1245. doi: 10.1126/science.1546322. [DOI] [PubMed] [Google Scholar]
- Kingston R. E., Schuetz T. J., Larin Z. Heat-inducible human factor that binds to a human hsp70 promoter. Mol Cell Biol. 1987 Apr;7(4):1530–1534. doi: 10.1128/mcb.7.4.1530. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kletzien R. F., Pariza M. W., Becker J. E., Potter V. R. A method using 3-O-methyl-D-glucose and phloretin for the determination of intracellular water space of cells in monolayer culture. Anal Biochem. 1975 Oct;68(2):537–544. doi: 10.1016/0003-2697(75)90649-1. [DOI] [PubMed] [Google Scholar]
- Kroeger P. E., Sarge K. D., Morimoto R. I. Mouse heat shock transcription factors 1 and 2 prefer a trimeric binding site but interact differently with the HSP70 heat shock element. Mol Cell Biol. 1993 Jun;13(6):3370–3383. doi: 10.1128/mcb.13.6.3370. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu R. Y., Kim D., Yang S. H., Li G. C. Dual control of heat shock response: involvement of a constitutive heat shock element-binding factor. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3078–3082. doi: 10.1073/pnas.90.7.3078. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morimoto R. I. Cells in stress: transcriptional activation of heat shock genes. Science. 1993 Mar 5;259(5100):1409–1410. doi: 10.1126/science.8451637. [DOI] [PubMed] [Google Scholar]
- Morimoto R. I., Sarge K. D., Abravaya K. Transcriptional regulation of heat shock genes. A paradigm for inducible genomic responses. J Biol Chem. 1992 Nov 5;267(31):21987–21990. [PubMed] [Google Scholar]
- Owen N. E., Villereal M. L. Na+ influx and cell growth in cultured human fibroblasts. Effect of indomethacin. Exp Cell Res. 1983 Jan;143(1):37–46. doi: 10.1016/0014-4827(83)90106-4. [DOI] [PubMed] [Google Scholar]
- Petronini P. G., Alfieri R., Campanini C., Borghetti A. F. Effect of an alkaline shift on induction of the heat shock response in human fibroblasts. J Cell Physiol. 1995 Mar;162(3):322–329. doi: 10.1002/jcp.1041620304. [DOI] [PubMed] [Google Scholar]
- Petronini P. G., Alfieri R., De Angelis E., Campanini C., Borghetti A. F., Wheeler K. P. Different HSP70 expression and cell survival during adaptive responses of 3T3 and transformed 3T3 cells to osmotic stress. Br J Cancer. 1993 Mar;67(3):493–499. doi: 10.1038/bjc.1993.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petronini P. G., De Angelis E. M., Borghetti A. F., Wheeler K. P. Effect of betaine on HSP70 expression and cell survival during adaptation to osmotic stress. Biochem J. 1993 Jul 15;293(Pt 2):553–558. doi: 10.1042/bj2930553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petronini P. G., De Angelis E. M., Borghetti P., Borghetti A. F., Wheeler K. P. Modulation by betaine of cellular responses to osmotic stress. Biochem J. 1992 Feb 15;282(Pt 1):69–73. doi: 10.1042/bj2820069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petronini P. G., Tramacere M., Kay J. E., Borghetti A. F. Adaptive response of cultured fibroblasts to hyperosmolarity. Exp Cell Res. 1986 Jul;165(1):180–190. doi: 10.1016/0014-4827(86)90542-2. [DOI] [PubMed] [Google Scholar]
- Petronini P. G., Tramacere M., Mazzini A., Piedimonte G., Silvotti L., Borghetti A. F. Hyperosmolarity-induced stress proteins in chick embryo fibroblasts. Exp Cell Res. 1987 Oct;172(2):450–462. doi: 10.1016/0014-4827(87)90403-4. [DOI] [PubMed] [Google Scholar]
- Saborio J. L., Pong S. S., Koch G. Selective and reversible inhibition of initiation of protein synthesis in mammalian cells. J Mol Biol. 1974 May 15;85(2):195–211. doi: 10.1016/0022-2836(74)90360-x. [DOI] [PubMed] [Google Scholar]
- Sarge K. D., Zimarino V., Holm K., Wu C., Morimoto R. I. Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability. Genes Dev. 1991 Oct;5(10):1902–1911. doi: 10.1101/gad.5.10.1902. [DOI] [PubMed] [Google Scholar]
- Sheikh-Hamad D., García-Pérez A., Ferraris J. D., Peters E. M., Burg M. B. Induction of gene expression by heat shock versus osmotic stress. Am J Physiol. 1994 Jul;267(1 Pt 2):F28–F34. doi: 10.1152/ajprenal.1994.267.1.F28. [DOI] [PubMed] [Google Scholar]
- Takenaka M., Preston A. S., Kwon H. M., Handler J. S. The tonicity-sensitive element that mediates increased transcription of the betaine transporter gene in response to hypertonic stress. J Biol Chem. 1994 Nov 25;269(47):29379–29381. [PubMed] [Google Scholar]
- Wheatley D. N. Cell growth and division in hypertonic medium. Exp Cell Res. 1974 Aug;87(2):219–232. doi: 10.1016/0014-4827(74)90474-1. [DOI] [PubMed] [Google Scholar]
- Widelitz R. B., Duffy J. J., Gerner E. W. Accumulation of heat shock protein 70 RNA and its relationship to protein synthesis after heat shock in mammalian cells. Exp Cell Res. 1987 Feb;168(2):539–545. doi: 10.1016/0014-4827(87)90026-7. [DOI] [PubMed] [Google Scholar]
- Yancey P. H., Clark M. E., Hand S. C., Bowlus R. D., Somero G. N. Living with water stress: evolution of osmolyte systems. Science. 1982 Sep 24;217(4566):1214–1222. doi: 10.1126/science.7112124. [DOI] [PubMed] [Google Scholar]
