Abstract
Cyclic ADP ribose (cADPR) is a potent Ca(2+)-releasing agent, and putative second messenger, the endogenous levels of which are tightly regulated by synthetic (ADP-ribosyl cyclases) and degradative (cADPR hydrolase) enzymes. These enzymes have been characterized in a number of mammalian and invertebrate tissues and their activities are often found on a single polypeptide. beta-NAD+, cGMP and nitric oxide (NO) have been reported to mobilize Ca2+ in the sea urchin egg via the cADPR-mediated pathway. We now report that in sea urchin egg homogenates, nicotinamide inhibits the Ca(2+)-mobilizing action of beta-NAD+, cGMP and NO, but has no effect on cADPR-induced Ca2+ release. Moreover, nicotinamide inhibits cGMP-induced regenerative Ca2+ waves in the intact sea urchin egg. By successfully separating the cADPR-metabolizing machinery from that which releases Ca2+, we have shown that nicotinamide inhibits cADPR-mediated Ca2+ signalling at the level of cADPR generation. Importantly, nicotinamide had no effect upon the hydrolysis of cADPR, and its selective action on cyclase activity was supported by its inhibition of purified Aplysia ADP-ribosyl cyclase, which does not exhibit detectable hydrolytic activity. The action of nicotinamide in blocking Ca2+ release by beta-NAD+, cGMP and NO strongly suggests that these agents act as modulators of cADPR synthesis rather than to sensitize calcium release channels to cADPR.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Clapper D. L., Walseth T. F., Dargie P. J., Lee H. C. Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J Biol Chem. 1987 Jul 15;262(20):9561–9568. [PubMed] [Google Scholar]
- Galione A., Lee H. C., Busa W. B. Ca(2+)-induced Ca2+ release in sea urchin egg homogenates: modulation by cyclic ADP-ribose. Science. 1991 Sep 6;253(5024):1143–1146. doi: 10.1126/science.1909457. [DOI] [PubMed] [Google Scholar]
- Galione A., McDougall A., Busa W. B., Willmott N., Gillot I., Whitaker M. Redundant mechanisms of calcium-induced calcium release underlying calcium waves during fertilization of sea urchin eggs. Science. 1993 Jul 16;261(5119):348–352. doi: 10.1126/science.8392748. [DOI] [PubMed] [Google Scholar]
- Galione A., White A., Willmott N., Turner M., Potter B. V., Watson S. P. cGMP mobilizes intracellular Ca2+ in sea urchin eggs by stimulating cyclic ADP-ribose synthesis. Nature. 1993 Sep 30;365(6445):456–459. doi: 10.1038/365456a0. [DOI] [PubMed] [Google Scholar]
- Graeff R. M., Walseth T. F., Fryxell K., Branton W. D., Lee H. C. Enzymatic synthesis and characterizations of cyclic GDP-ribose. A procedure for distinguishing enzymes with ADP-ribosyl cyclase activity. J Biol Chem. 1994 Dec 2;269(48):30260–30267. [PubMed] [Google Scholar]
- Graeff R. M., Walseth T. F., Hill H. K., Lee H. C. Fluorescent analogs of cyclic ADP-ribose: synthesis, spectral characterization, and use. Biochemistry. 1996 Jan 16;35(2):379–386. doi: 10.1021/bi952083f. [DOI] [PubMed] [Google Scholar]
- Guse A. H., da Silva C. P., Emmrich F., Ashamu G. A., Potter B. V., Mayr G. W. Characterization of cyclic adenosine diphosphate-ribose-induced Ca2+ release in T lymphocyte cell lines. J Immunol. 1995 Oct 1;155(7):3353–3359. [PubMed] [Google Scholar]
- Higashida H., Egorova A., Hoshi N., Noda M. Streptozotocin, an inducer of NAD+ decrease, attenuates M-potassium current inhibition by ATP, bradykinin, angiotensin II, endothelin 1 and acetylcholine in NG108-15 cells. FEBS Lett. 1996 Feb 5;379(3):236–238. doi: 10.1016/0014-5793(95)01516-7. [DOI] [PubMed] [Google Scholar]
- Higashida H., Robbins J., Egorova A., Noda M., Taketo M., Ishizaka N., Takasawa S., Okamoto H., Brown D. A. Nicotinamide-adenine dinucleotide regulates muscarinic receptor-coupled K+ (M) channels in rodent NG108-15 cells. J Physiol. 1995 Jan 15;482(Pt 2):317–323. doi: 10.1113/jphysiol.1995.sp020520. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirata Y., Kimura N., Sato K., Ohsugi Y., Takasawa S., Okamoto H., Ishikawa J., Kaisho T., Ishihara K., Hirano T. ADP ribosyl cyclase activity of a novel bone marrow stromal cell surface molecule, BST-1. FEBS Lett. 1994 Dec 19;356(2-3):244–248. doi: 10.1016/0014-5793(94)01279-2. [DOI] [PubMed] [Google Scholar]
- Howard M., Grimaldi J. C., Bazan J. F., Lund F. E., Santos-Argumedo L., Parkhouse R. M., Walseth T. F., Lee H. C. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science. 1993 Nov 12;262(5136):1056–1059. doi: 10.1126/science.8235624. [DOI] [PubMed] [Google Scholar]
- Hua S. Y., Tokimasa T., Takasawa S., Furuya Y., Nohmi M., Okamoto H., Kuba K. Cyclic ADP-ribose modulates Ca2+ release channels for activation by physiological Ca2+ entry in bullfrog sympathetic neurons. Neuron. 1994 May;12(5):1073–1079. doi: 10.1016/0896-6273(94)90315-8. [DOI] [PubMed] [Google Scholar]
- Inageda K., Takahashi K., Tokita K., Nishina H., Kanaho Y., Kukimoto I., Kontani K., Hoshino S., Katada T. Enzyme properties of Aplysia ADP-ribosyl cyclase: comparison with NAD glycohydrolase of CD38 antigen. J Biochem. 1995 Jan;117(1):125–131. doi: 10.1093/oxfordjournals.jbchem.a124698. [DOI] [PubMed] [Google Scholar]
- Karasawa T., Takasawa S., Yamakawa K., Yonekura H., Okamoto H., Nakamura S. NAD(+)-glycohydrolase from Streptococcus pyogenes shows cyclic ADP-ribose forming activity. FEMS Microbiol Lett. 1995 Aug 1;130(2-3):201–204. doi: 10.1111/j.1574-6968.1995.tb07720.x. [DOI] [PubMed] [Google Scholar]
- Kim H., Jacobson E. L., Jacobson M. K. NAD glycohydrolases: a possible function in calcium homeostasis. Mol Cell Biochem. 1994 Sep;138(1-2):237–243. doi: 10.1007/BF00928467. [DOI] [PubMed] [Google Scholar]
- Kim H., Jacobson E. L., Jacobson M. K. Synthesis and degradation of cyclic ADP-ribose by NAD glycohydrolases. Science. 1993 Sep 3;261(5126):1330–1333. doi: 10.1126/science.8395705. [DOI] [PubMed] [Google Scholar]
- Kuemmerle J. F., Makhlouf G. M. Agonist-stimulated cyclic ADP ribose. Endogenous modulator of Ca(2+)-induced Ca2+ release in intestinal longitudinal muscle. J Biol Chem. 1995 Oct 27;270(43):25488–25494. doi: 10.1074/jbc.270.43.25488. [DOI] [PubMed] [Google Scholar]
- Lee H. C., Aarhus R. ADP-ribosyl cyclase: an enzyme that cyclizes NAD+ into a calcium-mobilizing metabolite. Cell Regul. 1991 Mar;2(3):203–209. doi: 10.1091/mbc.2.3.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee H. C., Aarhus R., Walseth T. F. Calcium mobilization by dual receptors during fertilization of sea urchin eggs. Science. 1993 Jul 16;261(5119):352–355. doi: 10.1126/science.8392749. [DOI] [PubMed] [Google Scholar]
- Lee H. C., Galione A., Walseth T. F. Cyclic ADP-ribose: metabolism and calcium mobilizing function. Vitam Horm. 1994;48:199–257. doi: 10.1016/s0083-6729(08)60499-9. [DOI] [PubMed] [Google Scholar]
- Lötscher H. R., Winterhalter K. H., Carafoli E., Richter C. Hydroperoxide-induced loss of pyridine nucleotides and release of calcium from rat liver mitochondria. J Biol Chem. 1980 Oct 10;255(19):9325–9330. [PubMed] [Google Scholar]
- Moss J., Vaughan M. ADP-ribosylation of guanyl nucleotide-binding regulatory proteins by bacterial toxins. Adv Enzymol Relat Areas Mol Biol. 1988;61:303–379. doi: 10.1002/9780470123072.ch6. [DOI] [PubMed] [Google Scholar]
- Nowicki M., Landon C., Sugawara S., Dennert G. Nicotinamide and 3-aminobenzamide interfere with receptor-mediated transmembrane signaling in murine cytotoxic T cells: independence of Golgi reorientation from calcium mobilization and inositol phosphate generation. Cell Immunol. 1991 Jan;132(1):115–126. doi: 10.1016/0008-8749(91)90011-y. [DOI] [PubMed] [Google Scholar]
- Oppenheimer N. J. NAD hydrolysis: chemical and enzymatic mechanisms. Mol Cell Biochem. 1994 Sep;138(1-2):245–251. doi: 10.1007/BF00928468. [DOI] [PubMed] [Google Scholar]
- Pekala P. H., Yost D. A., Anderson B. M. Self-inactivation of an erythrocyte NAD glycohydrolase. Mol Cell Biochem. 1980 May 28;31(1):49–56. doi: 10.1007/BF00817890. [DOI] [PubMed] [Google Scholar]
- Poenie M. Alteration of intracellular Fura-2 fluorescence by viscosity: a simple correction. Cell Calcium. 1990 Feb-Mar;11(2-3):85–91. doi: 10.1016/0143-4160(90)90062-y. [DOI] [PubMed] [Google Scholar]
- Rankin P. W., Jacobson E. L., Benjamin R. C., Moss J., Jacobson M. K. Quantitative studies of inhibitors of ADP-ribosylation in vitro and in vivo. J Biol Chem. 1989 Mar 15;264(8):4312–4317. [PubMed] [Google Scholar]
- Rusinko N., Lee H. C. Widespread occurrence in animal tissues of an enzyme catalyzing the conversion of NAD+ into a cyclic metabolite with intracellular Ca2+-mobilizing activity. J Biol Chem. 1989 Jul 15;264(20):11725–11731. [PubMed] [Google Scholar]
- Slama J. T., Simmons A. M. Inhibition of NAD glycohydrolase and ADP-ribosyl transferases by carbocyclic analogues of oxidized nicotinamide adenine dinucleotide. Biochemistry. 1989 Sep 19;28(19):7688–7694. doi: 10.1021/bi00445a025. [DOI] [PubMed] [Google Scholar]
- Takasawa S., Nata K., Yonekura H., Okamoto H. Cyclic ADP-ribose in insulin secretion from pancreatic beta cells. Science. 1993 Jan 15;259(5093):370–373. doi: 10.1126/science.8420005. [DOI] [PubMed] [Google Scholar]
- Walseth T. F., Aarhus R., Zeleznikar R. J., Jr, Lee H. C. Determination of endogenous levels of cyclic ADP-ribose in rat tissues. Biochim Biophys Acta. 1991 Aug 13;1094(1):113–120. doi: 10.1016/0167-4889(91)90032-s. [DOI] [PubMed] [Google Scholar]
- Walseth T. F., Lee H. C. Synthesis and characterization of antagonists of cyclic-ADP-ribose-induced Ca2+ release. Biochim Biophys Acta. 1993 Sep 13;1178(3):235–242. doi: 10.1016/0167-4889(93)90199-y. [DOI] [PubMed] [Google Scholar]
- Weis M., Kass G. E., Orrenius S., Moldéus P. N-acetyl-p-benzoquinone imine induces Ca2+ release from mitochondria by stimulating pyridine nucleotide hydrolysis. J Biol Chem. 1992 Jan 15;267(2):804–809. [PubMed] [Google Scholar]
- Willmott N., Sethi J. K., Walseth T. F., Lee H. C., White A. M., Galione A. Nitric oxide-induced mobilization of intracellular calcium via the cyclic ADP-ribose signaling pathway. J Biol Chem. 1996 Feb 16;271(7):3699–3705. doi: 10.1074/jbc.271.7.3699. [DOI] [PubMed] [Google Scholar]
- Yamauchi J., Tanuma S. Occurrence of an NAD+ glycohydrolase in bovine brain cytosol. Arch Biochem Biophys. 1994 Jan;308(1):327–329. doi: 10.1006/abbi.1994.1046. [DOI] [PubMed] [Google Scholar]
- Zocchi E., Franco L., Guida L., Benatti U., Bargellesi A., Malavasi F., Lee H. C., De Flora A. A single protein immunologically identified as CD38 displays NAD+ glycohydrolase, ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase activities at the outer surface of human erythrocytes. Biochem Biophys Res Commun. 1993 Nov 15;196(3):1459–1465. doi: 10.1006/bbrc.1993.2416. [DOI] [PubMed] [Google Scholar]