Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Oct 15;319(Pt 2):633–640. doi: 10.1042/bj3190633

The effect of respiratory chain impairment of beta-oxidation in rat heart mitochondria.

S Eaton 1, M Pourfarzam 1, K Bartlett 1
PMCID: PMC1217814  PMID: 8912705

Abstract

Cardiac ischaemia leads to an inhibition of beta-oxidation flux and an accumulation of acyl-CoA and acyl-carnitine esters in the myocardium. However, there remains some uncertainty as to which esters accumulate during cardiac ischaemia and therefore the site of inhibition of beta-oxidation [Moore, Radloff, Hull and Sweely (1980) Am. J. Physiol. 239, H257-H265; Latipää (1989) J. Mol. Cell. Cardiol. 21, 765-771]. When beta-oxidation of hexadecanoyl-CoA in state III rat heart mitochondria was inhibited by titration of complex III activity, flux measured as 14CO2 release, acid-soluble radioactivity or as acetyl-carnitine was progressively decreased. Low concentrations of myxothiazol caused reduction of the ubiquinone pool whereas the NAD+/NADH redox state was less responsive. Measurement of the CoA and carnitine esters generated under these conditions showed that there was a progressive decrease in the amounts of chain-shortened saturated acyl esters with increasing amounts of myxothiazol. The concentrations of 3-hydroxyacyl and 2-enoyl esters, however, were increased between 0 and 0.2 microM myxothiazol but were lowered at higher myxothiazol concentrations. More hexadecanoyl-CoA and hexadecanoyl-carnitine were present with increasing concentrations of myxothiazol. We conclude that 3-hydroxyacyl-CoA dehydrogenase and acyl-CoA dehydrogenase activities are inhibited by reduction of the ubiquinone pool, and that this explains the confusion over which esters of CoA and carnitine accumulate during cardiac ischaemia. Furthermore these studies demonstrate that the site of the control exerted by the respiratory chain over beta-oxidation is shifted depending on the extent of the inhibition of the respiratory chain.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beckmann J. D., Frerman F. E. Electron-transfer flavoprotein-ubiquinone oxidoreductase from pig liver: purification and molecular, redox, and catalytic properties. Biochemistry. 1985 Jul 16;24(15):3913–3921. doi: 10.1021/bi00336a016. [DOI] [PubMed] [Google Scholar]
  2. Beckmann J. D., Frerman F. E., McKean M. C. Inhibition of general acyl CoA dehydrogenase by electron transfer flavoprotein semiquinone. Biochem Biophys Res Commun. 1981 Oct 30;102(4):1290–1294. doi: 10.1016/s0006-291x(81)80151-9. [DOI] [PubMed] [Google Scholar]
  3. Birch-Machin M. A., Briggs H. L., Saborido A. A., Bindoff L. A., Turnbull D. M. An evaluation of the measurement of the activities of complexes I-IV in the respiratory chain of human skeletal muscle mitochondria. Biochem Med Metab Biol. 1994 Feb;51(1):35–42. doi: 10.1006/bmmb.1994.1004. [DOI] [PubMed] [Google Scholar]
  4. Bremer J., Wojtczak A. B. Factors controlling the rate of fatty acid -oxidation in rat liver mitochondria. Biochim Biophys Acta. 1972 Dec 8;280(4):515–530. doi: 10.1016/0005-2760(72)90131-2. [DOI] [PubMed] [Google Scholar]
  5. CHANCE B. Cellular oxygen requirements. Fed Proc. 1957 Sep;16(3):671–680. [PubMed] [Google Scholar]
  6. Corr P. B., Gross R. W., Sobel B. E. Amphipathic metabolites and membrane dysfunction in ischemic myocardium. Circ Res. 1984 Aug;55(2):135–154. doi: 10.1161/01.res.55.2.135. [DOI] [PubMed] [Google Scholar]
  7. Davidson B., Schulz H. Separation, properties, and regulation of acyl coenzyme A dehydrogenases from bovine heat and liver. Arch Biochem Biophys. 1982 Jan;213(1):155–162. doi: 10.1016/0003-9861(82)90450-7. [DOI] [PubMed] [Google Scholar]
  8. Eaton S., Bhuiyan A. K., Kler R. S., Turnbull D. M., Bartlett K. Intramitochondrial control of the oxidation of hexadecanoate in skeletal muscle. A study of the acyl-CoA esters which accumulate during rat skeletal-muscle mitochondrial beta-oxidation of [U-14C]hexadecanoate and [U-14C]hexadecanoyl-carnitine. Biochem J. 1993 Jan 1;289(Pt 1):161–168. doi: 10.1042/bj2890161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eaton S., Turnbull D. M., Bartlett K. Production of 3-enoyl-CoA esters from palmitate by rat liver mitochondria. Biochem Soc Trans. 1994 May;22(2):119S–119S. doi: 10.1042/bst022119s. [DOI] [PubMed] [Google Scholar]
  10. Eaton S., Turnbull D. M., Bartlett K. Redox control of beta-oxidation in rat liver mitochondria. Eur J Biochem. 1994 Mar 15;220(3):671–681. doi: 10.1111/j.1432-1033.1994.tb18668.x. [DOI] [PubMed] [Google Scholar]
  11. Eaton S., Zaitoun A. M., Record C. O., Bartlett K. beta-Oxidation in human alcoholic and non-alcoholic hepatic steatosis. Clin Sci (Lond) 1996 Apr;90(4):307–313. doi: 10.1042/cs0900307. [DOI] [PubMed] [Google Scholar]
  12. Estornell E., Fato R., Castelluccio C., Cavazzoni M., Parenti Castelli G., Lenaz G. Saturation kinetics of coenzyme Q in NADH and succinate oxidation in beef heart mitochondria. FEBS Lett. 1992 Oct 19;311(2):107–109. doi: 10.1016/0014-5793(92)81378-y. [DOI] [PubMed] [Google Scholar]
  13. Frerman F. E. Acyl-CoA dehydrogenases, electron transfer flavoprotein and electron transfer flavoprotein dehydrogenase. Biochem Soc Trans. 1988 Jun;16(3):416–418. doi: 10.1042/bst0160416. [DOI] [PubMed] [Google Scholar]
  14. Frerman F. E. Reaction of electron-transfer flavoprotein ubiquinone oxidoreductase with the mitochondrial respiratory chain. Biochim Biophys Acta. 1987 Sep 10;893(2):161–169. doi: 10.1016/0005-2728(87)90035-1. [DOI] [PubMed] [Google Scholar]
  15. Gerth K., Irschik H., Reichenbach H., Trowitzsch W. Myxothiazol, an antibiotic from Myxococcus fulvus (myxobacterales). I. Cultivation, isolation, physico-chemical and biological properties. J Antibiot (Tokyo) 1980 Dec;33(12):1474–1479. doi: 10.7164/antibiotics.33.1474. [DOI] [PubMed] [Google Scholar]
  16. Halestrap A. P., Dunlop J. L. Intramitochondrial regulation of fatty acid beta-oxidation occurs between flavoprotein and ubiquinone. A role for changes in the matrix volume. Biochem J. 1986 Nov 1;239(3):559–565. doi: 10.1042/bj2390559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Halestrap A. P. The regulation of the oxidation of fatty acids and other substrates in rat heart mitochondria by changes in the matrix volume induced by osmotic strength, valinomycin and Ca2+. Biochem J. 1987 May 15;244(1):159–164. doi: 10.1042/bj2440159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. He X. Y., Yang S. Y., Schulz H. Inhibition of enoyl-CoA hydratase by long-chain L-3-hydroxyacyl-CoA and its possible effect on fatty acid oxidation. Arch Biochem Biophys. 1992 Nov 1;298(2):527–531. doi: 10.1016/0003-9861(92)90445-3. [DOI] [PubMed] [Google Scholar]
  19. Jackson S., Kler R. S., Bartlett K., Briggs H., Bindoff L. A., Pourfarzam M., Gardner-Medwin D., Turnbull D. M. Combined enzyme defect of mitochondrial fatty acid oxidation. J Clin Invest. 1992 Oct;90(4):1219–1225. doi: 10.1172/JCI115983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kler R. S., Jackson S., Bartlett K., Bindoff L. A., Eaton S., Pourfarzam M., Frerman F. E., Goodman S. I., Watmough N. J., Turnbull D. M. Quantitation of acyl-CoA and acylcarnitine esters accumulated during abnormal mitochondrial fatty acid oxidation. J Biol Chem. 1991 Dec 5;266(34):22932–22938. [PubMed] [Google Scholar]
  21. Kröger A., Klingenberg M. Further evidence for the pool function of ubiquinone as derived from the inhibition of the electron transport by antimycin. Eur J Biochem. 1973 Nov 15;39(2):313–323. doi: 10.1111/j.1432-1033.1973.tb03129.x. [DOI] [PubMed] [Google Scholar]
  22. Kröger A., Klingenberg M. The kinetics of the redox reactions of ubiquinone related to the electron-transport activity in the respiratory chain. Eur J Biochem. 1973 Apr;34(2):358–368. doi: 10.1111/j.1432-1033.1973.tb02767.x. [DOI] [PubMed] [Google Scholar]
  23. Kunz W. S. Application of the theory of steady-state flux control to mitochondrial beta-oxidation. Biomed Biochim Acta. 1991;50(12):1143–1157. [PubMed] [Google Scholar]
  24. Kunz W. S. Evaluation of electron-transfer flavoprotein and alpha-lipoamide dehydrogenase redox states by two-channel fluorimetry and its application to the investigation of beta-oxidation. Biochim Biophys Acta. 1988 Jan 20;932(1):8–16. doi: 10.1016/0005-2728(88)90134-x. [DOI] [PubMed] [Google Scholar]
  25. Liu M. S., Siess M., Hoffmann P. C. The effect of changes in functional activity on ubiquinone redox status in isolated atria. Eur J Biochem. 1973 Aug 17;37(2):259–269. doi: 10.1111/j.1432-1033.1973.tb02984.x. [DOI] [PubMed] [Google Scholar]
  26. Moore K. H., Koen A. E., Hull F. E. beta-Hydroxy fatty acid production by ischemic rabbit heart. J Clin Invest. 1982 Feb;69(2):377–383. doi: 10.1172/JCI110461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Moore K. H., Radloff J. F., Hull F. E., Sweeley C. C. Incomplete fatty acid oxidation by ischemic heart: beta-hydroxy fatty acid production. Am J Physiol. 1980 Aug;239(2):H257–H265. doi: 10.1152/ajpheart.1980.239.2.H257. [DOI] [PubMed] [Google Scholar]
  28. Moore K. H., Radloff J. F., Koen A. E., Hull F. E. Incomplete fatty acid oxidation by heart mitochondria: beta-hydroxy fatty acid production. J Mol Cell Cardiol. 1982 Aug;14(8):451–459. doi: 10.1016/0022-2828(82)90151-1. [DOI] [PubMed] [Google Scholar]
  29. Nada M. A., Chace D. H., Sprecher H., Roe C. R. Investigation of beta-oxidation intermediates in normal and MCAD-deficient human fibroblasts using tandem mass spectrometry. Biochem Mol Med. 1995 Feb;54(1):59–66. doi: 10.1006/bmme.1995.1009. [DOI] [PubMed] [Google Scholar]
  30. Nada M. A., Rhead W. J., Sprecher H., Schulz H., Roe C. R. Evidence for intermediate channeling in mitochondrial beta-oxidation. J Biol Chem. 1995 Jan 13;270(2):530–535. doi: 10.1074/jbc.270.2.530. [DOI] [PubMed] [Google Scholar]
  31. Neely J. R., Feuvray D. Metabolic products and myocardial ischemia. Am J Pathol. 1981 Feb;102(2):282–291. [PMC free article] [PubMed] [Google Scholar]
  32. Noack H., Kunz W. S., Augustin W. Evaluation of a procedure for the simultaneous determination of oxidized and reduced pyridine nucleotides and adenylates in organic phenol extracts from mitochondria. Anal Biochem. 1992 Apr;202(1):162–165. doi: 10.1016/0003-2697(92)90222-s. [DOI] [PubMed] [Google Scholar]
  33. Pande S. V., Blanchaer M. C. Preferential loss of ATP-dependent long-chain fatty acid activating enzyme in mitochondria prepared using Nagarse. Biochim Biophys Acta. 1970 Feb 10;202(1):43–48. doi: 10.1016/0005-2760(70)90216-x. [DOI] [PubMed] [Google Scholar]
  34. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  35. Pourfarzam M., Bartlett K. Synthesis, characterisation and high-performance liquid chromatography of C6-C16 dicarboxylyl-mono-coenzyme A and -mono-carnitine esters. J Chromatogr. 1991 Oct 4;570(2):253–276. doi: 10.1016/0378-4347(91)80529-l. [DOI] [PubMed] [Google Scholar]
  36. Pourfarzam M., Schaefer J., Turnbull D. M., Bartlett K. Analysis of fatty acid oxidation intermediates in cultured fibroblasts to detect mitochondrial oxidation disorders. Clin Chem. 1994 Dec;40(12):2267–2275. [PubMed] [Google Scholar]
  37. Powell P. J., Lau S. M., Killian D., Thorpe C. Interaction of acyl coenzyme A substrates and analogues with pig kidney medium-chain acyl-coA dehydrogenase. Biochemistry. 1987 Jun 16;26(12):3704–3710. doi: 10.1021/bi00386a066. [DOI] [PubMed] [Google Scholar]
  38. Rabinowitz J. L., Hercker E. S. Incomplete oxidation of palmitate and leakage of intermediary products during anoxia. Arch Biochem Biophys. 1974 Apr 2;161(2):621–627. doi: 10.1016/0003-9861(74)90345-2. [DOI] [PubMed] [Google Scholar]
  39. Ramsay R. R., Steenkamp D. J., Husain M. Reactions of electron-transfer flavoprotein and electron-transfer flavoprotein: ubiquinone oxidoreductase. Biochem J. 1987 Feb 1;241(3):883–892. doi: 10.1042/bj2410883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Shug A. L., Thomsen J. H., Folts J. D., Bittar N., Klein M. I., Koke J. R., Huth P. J. Changes in tissue levels of carnitine and other metabolites during myocardial ischemia and anoxia. Arch Biochem Biophys. 1978 Apr 15;187(1):25–33. doi: 10.1016/0003-9861(78)90003-6. [DOI] [PubMed] [Google Scholar]
  41. Van Hove J. L., Zhang W., Kahler S. G., Roe C. R., Chen Y. T., Terada N., Chace D. H., Iafolla A. K., Ding J. H., Millington D. S. Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency: diagnosis by acylcarnitine analysis in blood. Am J Hum Genet. 1993 May;52(5):958–966. [PMC free article] [PubMed] [Google Scholar]
  42. Van den Bergen C. W., Wagner A. M., Krab K., Moore A. L. The relationship between electron flux and the redox poise of the quinone pool in plant mitochondria. Interplay between quinol-oxidizing and quinone-reducing pathways. Eur J Biochem. 1994 Dec 15;226(3):1071–1078. doi: 10.1111/j.1432-1033.1994.01071.x. [DOI] [PubMed] [Google Scholar]
  43. Veitch K., Hombroeckx A., Caucheteux D., Pouleur H., Hue L. Global ischaemia induces a biphasic response of the mitochondrial respiratory chain. Anoxic pre-perfusion protects against ischaemic damage. Biochem J. 1992 Feb 1;281(Pt 3):709–715. doi: 10.1042/bj2810709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Watmough N. J., Turnbull D. M., Sherratt H. S., Bartlett K. Measurement of the acyl-CoA intermediates of beta-oxidation by h.p.l.c. with on-line radiochemical and photodiode-array detection. Application to the study of [U-14C]hexadecanoate oxidation by intact rat liver mitochondria. Biochem J. 1989 Aug 15;262(1):261–269. doi: 10.1042/bj2620261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. van Hoek A. N., van Gaalen M. C., de Vries S., Berden J. A. Pre-steady-state reduction kinetics of QH2:cytochrome c oxidoreductase and the Q-pool: evidence for a special quinone not in rapid equilibrium with the Q-pool. Biochim Biophys Acta. 1987 Jun 9;892(1):152–161. doi: 10.1016/0005-2728(87)90257-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES