Abstract
Signal transduction from mouse bradykinin B2 receptors to calcium influx was studied in ras-transformed NIH/3T3 (DT) fibroblasts. DT cells were preloaded with fura-2 and whole-cell voltage-clamped. Activation of B2 receptors resulted in a decrease of cellular fluorescence at the excitation wavelength of 340, or 360 nm after MnCl2 application, in both the presence and absence of external Ca2+ in DT cells, at a holding potential of -40 mV. This Mn2+ entry through the Ca2+ influx pathway increased with membrane hyperpolarization. Internal application of inositol 1,3,4,5-tetrakisphosphate (InsP4), but not of inositol 1,4,5-trisphosphate, mimicked membrane potential-dependent Mn2+ entry. Bradykinin- and InsP4-induced Ca2+ influx was blocked by 10-100 microM genistein, a tyrosine kinase inhibitor. B2 receptor activation induced time-dependent tyrosine phosphorylation of mitogen-activated protein kinase and 120 kDa protein, which was dose-dependently inhibited by genistein. Bradykinin was unable to induce Ca2+ oscillations in genistein-treated DT cells. Our results show that bradykinin-induced Ca2+ influx and oscillations depend upon protein tyrosine phosphorylation. The results suggest that two bradykinin B2 receptor-activated signal pathways, protein tyrosine phosphorylation and formation of InsP4, merge at the Ca2+ influx process in ras-transformed NIH/3T3 fibroblasts.
Full Text
The Full Text of this article is available as a PDF (796.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akiyama T., Ishida J., Nakagawa S., Ogawara H., Watanabe S., Itoh N., Shibuya M., Fukami Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem. 1987 Apr 25;262(12):5592–5595. [PubMed] [Google Scholar]
- Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
- Cheek T. R., Murawsky M. M., Stauderman K. A. Histamine-induced Ca2+ entry precedes Ca2+ mobilization in bovine adrenal chromaffin cells. Biochem J. 1994 Dec 1;304(Pt 2):469–476. doi: 10.1042/bj3040469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Clapham D. E. Calcium signaling. Cell. 1995 Jan 27;80(2):259–268. doi: 10.1016/0092-8674(95)90408-5. [DOI] [PubMed] [Google Scholar]
- Cullen P. J., Hsuan J. J., Truong O., Letcher A. J., Jackson T. R., Dawson A. P., Irvine R. F. Identification of a specific Ins(1,3,4,5)P4-binding protein as a member of the GAP1 family. Nature. 1995 Aug 10;376(6540):527–530. doi: 10.1038/376527a0. [DOI] [PubMed] [Google Scholar]
- Demaurex N., Monod A., Lew D. P., Krause K. H. Characterization of receptor-mediated and store-regulated Ca2+ influx in human neutrophils. Biochem J. 1994 Feb 1;297(Pt 3):595–601. doi: 10.1042/bj2970595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
- Fleming I., Fisslthaler B., Busse R. Calcium signaling in endothelial cells involves activation of tyrosine kinases and leads to activation of mitogen-activated protein kinases. Circ Res. 1995 Apr;76(4):522–529. doi: 10.1161/01.res.76.4.522. [DOI] [PubMed] [Google Scholar]
- Fukuda M., Aruga J., Niinobe M., Aimoto S., Mikoshiba K. Inositol-1,3,4,5-tetrakisphosphate binding to C2B domain of IP4BP/synaptotagmin II. J Biol Chem. 1994 Nov 18;269(46):29206–29211. [PubMed] [Google Scholar]
- Gawler D. J., Zhang L. J., Moran M. F. Mutation-deletion analysis of a Ca(2+)-dependent phospholipid binding (CaLB) domain within p120 GAP, a GTPase-activating protein for p21 ras. Biochem J. 1995 Apr 15;307(Pt 2):487–491. doi: 10.1042/bj3070487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Hashii M., Hirata M., Ozaki S., Nozawa Y., Higashida H. Ca2+ influx evoked by inositol-3,4,5,6-tetrakisphosphate in ras-transformed NIH/3T3 fibroblasts. FEBS Lett. 1994 Mar 7;340(3):276–280. doi: 10.1016/0014-5793(94)80153-3. [DOI] [PubMed] [Google Scholar]
- Hashii M., Hirata M., Ozaki S., Nozawa Y., Higashida H. Ca2+ influx gated by inositol-3,4,5,6-tetrakisphosphate in NIH/3T3 fibroblasts. Biochem Biophys Res Commun. 1994 May 16;200(3):1300–1306. doi: 10.1006/bbrc.1994.1592. [DOI] [PubMed] [Google Scholar]
- Hashii M., Nozawa Y., Higashida H. Bradykinin-induced cytosolic Ca2+ oscillations and inositol tetrakisphosphate-induced Ca2+ influx in voltage-clamped ras-transformed NIH/3T3 fibroblasts. J Biol Chem. 1993 Sep 15;268(26):19403–19410. [PubMed] [Google Scholar]
- Higashida H., Hashii M., Fukuda K., Caulfield M. P., Numa S., Brown D. A. Selective coupling of different muscarinic acetylcholine receptors to neuronal calcium currents in DNA-transfected cells. Proc Biol Sci. 1990 Oct 22;242(1303):68–74. doi: 10.1098/rspb.1990.0105. [DOI] [PubMed] [Google Scholar]
- Hoth M., Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature. 1992 Jan 23;355(6358):353–356. doi: 10.1038/355353a0. [DOI] [PubMed] [Google Scholar]
- Huang S., Maher V. M., McCormick J. J. Extracellular Ca2+ stimulates the activation of mitogen-activated protein kinase and cell growth in human fibroblasts. Biochem J. 1995 Sep 15;310(Pt 3):881–885. doi: 10.1042/bj3100881. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huckle W. R., Dy R. C., Earp H. S. Calcium-dependent increase in tyrosine kinase activity stimulated by angiotensin II. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8837–8841. doi: 10.1073/pnas.89.18.8837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inglese J., Koch W. J., Touhara K., Lefkowitz R. J. G beta gamma interactions with PH domains and Ras-MAPK signaling pathways. Trends Biochem Sci. 1995 Apr;20(4):151–156. doi: 10.1016/s0968-0004(00)88992-6. [DOI] [PubMed] [Google Scholar]
- Ito A., Satoh T., Kaziro Y., Itoh H. G protein beta gamma subunit activates Ras, Raf, and MAP kinase in HEK 293 cells. FEBS Lett. 1995 Jul 10;368(1):183–187. doi: 10.1016/0014-5793(95)00643-n. [DOI] [PubMed] [Google Scholar]
- Jacob R. Agonist-stimulated divalent cation entry into single cultured human umbilical vein endothelial cells. J Physiol. 1990 Feb;421:55–77. doi: 10.1113/jphysiol.1990.sp017933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jenner S., Farndale R. W., Sage S. O. The effect of calcium-store depletion and refilling with various bivalent cations on tyrosine phosphorylation and Mn2+ entry in fura-2-loaded human platelets. Biochem J. 1994 Oct 15;303(Pt 2):337–339. doi: 10.1042/bj3030337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones S., Brown D. A., Milligan G., Willer E., Buckley N. J., Caulfield M. P. Bradykinin excites rat sympathetic neurons by inhibition of M current through a mechanism involving B2 receptors and G alpha q/11. Neuron. 1995 Feb;14(2):399–405. doi: 10.1016/0896-6273(95)90295-3. [DOI] [PubMed] [Google Scholar]
- Kass G. E., Webb D. L., Chow S. C., Llopis J., Berggren P. O. Receptor-mediated Mn2+ influx in rat hepatocytes: comparison of cells loaded with Fura-2 ester and cells microinjected with Fura-2 salt. Biochem J. 1994 Aug 15;302(Pt 1):5–9. doi: 10.1042/bj3020005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kwan C. Y., Putney J. W., Jr Uptake and intracellular sequestration of divalent cations in resting and methacholine-stimulated mouse lacrimal acinar cells. Dissociation by Sr2+ and Ba2+ of agonist-stimulated divalent cation entry from the refilling of the agonist-sensitive intracellular pool. J Biol Chem. 1990 Jan 15;265(2):678–684. [PubMed] [Google Scholar]
- Leeb-Lundberg L. M., Song X. H. Bradykinin and bombesin rapidly stimulate tyrosine phosphorylation of a 120-kDa group of proteins in Swiss 3T3 cells. J Biol Chem. 1991 Apr 25;266(12):7746–7749. [PubMed] [Google Scholar]
- Leeb-Lundberg L. M., Song X. H., Mathis S. A. Focal adhesion-associated proteins p125FAK and paxillin are substrates for bradykinin-stimulated tyrosine phosphorylation in Swiss 3T3 cells. J Biol Chem. 1994 Sep 30;269(39):24328–24334. [PubMed] [Google Scholar]
- Lev S., Moreno H., Martinez R., Canoll P., Peles E., Musacchio J. M., Plowman G. D., Rudy B., Schlessinger J. Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions. Nature. 1995 Aug 31;376(6543):737–745. doi: 10.1038/376737a0. [DOI] [PubMed] [Google Scholar]
- Llopis J., Kass G. E., Gahm A., Orrenius S. Evidence for two pathways of receptor-mediated Ca2+ entry in hepatocytes. Biochem J. 1992 May 15;284(Pt 1):243–247. doi: 10.1042/bj2840243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lückhoff A., Clapham D. E. Inositol 1,3,4,5-tetrakisphosphate activates an endothelial Ca(2+)-permeable channel. Nature. 1992 Jan 23;355(6358):356–358. doi: 10.1038/355356a0. [DOI] [PubMed] [Google Scholar]
- Maekawa M., Li S., Iwamatsu A., Morishita T., Yokota K., Imai Y., Kohsaka S., Nakamura S., Hattori S. A novel mammalian Ras GTPase-activating protein which has phospholipid-binding and Btk homology regions. Mol Cell Biol. 1994 Oct;14(10):6879–6885. doi: 10.1128/mcb.14.10.6879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moolenaar W. H. Lysophosphatidic acid, a multifunctional phospholipid messenger. J Biol Chem. 1995 Jun 2;270(22):12949–12952. doi: 10.1074/jbc.270.22.12949. [DOI] [PubMed] [Google Scholar]
- Morris A. P., Gallacher D. V., Irvine R. F., Petersen O. H. Synergism of inositol trisphosphate and tetrakisphosphate in activating Ca2+-dependent K+ channels. Nature. 1987 Dec 17;330(6149):653–655. doi: 10.1038/330653a0. [DOI] [PubMed] [Google Scholar]
- Mozhayeva G. N., Naumov A. P., Kuryshev YuA Variety of Ca(2+)-permeable channels in human carcinoma A431 cells. J Membr Biol. 1991 Nov;124(2):113–126. doi: 10.1007/BF01870456. [DOI] [PubMed] [Google Scholar]
- Niinobe M., Yamaguchi Y., Fukuda M., Mikoshiba K. Synaptotagmin is an inositol polyphosphate binding protein: isolation and characterization as an Ins 1,3,4,5-P4 binding protein. Biochem Biophys Res Commun. 1994 Dec 15;205(2):1036–1042. doi: 10.1006/bbrc.1994.2770. [DOI] [PubMed] [Google Scholar]
- Noda M., Selinger Z., Scolnick E. M., Bassin R. H. Flat revertants isolated from Kirsten sarcoma virus-transformed cells are resistant to the action of specific oncogenes. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5602–5606. doi: 10.1073/pnas.80.18.5602. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sargeant P., Farndale R. W., Sage S. O. ADP- and thapsigargin-evoked Ca2+ entry and protein-tyrosine phosphorylation are inhibited by the tyrosine kinase inhibitors genistein and methyl-2,5-dihydroxycinnamate in fura-2-loaded human platelets. J Biol Chem. 1993 Aug 25;268(24):18151–18156. [PubMed] [Google Scholar]
- Schlaepfer D. D., Hanks S. K., Hunter T., van der Geer P. Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature. 1994 Dec 22;372(6508):786–791. doi: 10.1038/372786a0. [DOI] [PubMed] [Google Scholar]
- Semenchuk L. A., Di Salvo J. Receptor-activated increases in intracellular calcium and protein tyrosine phosphorylation in vascular smooth muscle cells. FEBS Lett. 1995 Aug 14;370(1-2):127–130. doi: 10.1016/0014-5793(95)00808-m. [DOI] [PubMed] [Google Scholar]
- Tepel M., Kühnapfel S., Theilmeier G., Teupe C., Schlotmann R., Zidek W. Filling state of intracellular Ca2+ pools triggers trans plasma membrane Na+ and Ca2+ influx by a tyrosine kinase-dependent pathway. J Biol Chem. 1994 Oct 21;269(42):26239–26242. [PubMed] [Google Scholar]
- Tsubokawa H., Oguro K., Robinson H. P., Masuzawa T., Rhee T. S., Takenawa T., Kawai N. Inositol 1,3,4,5-tetrakisphosphate as a mediator of neuronal death in ischemic hippocampus. Neuroscience. 1994 Mar;59(2):291–297. doi: 10.1016/0306-4522(94)90597-5. [DOI] [PubMed] [Google Scholar]
- Vostal J. G., Jackson W. L., Shulman N. R. Cytosolic and stored calcium antagonistically control tyrosine phosphorylation of specific platelet proteins. J Biol Chem. 1991 Sep 5;266(25):16911–16916. [PubMed] [Google Scholar]
- Wilk-Blaszczak M. A., Singer W. D., Gutowski S., Sternweis P. C., Belardetti F. The G protein G13 mediates inhibition of voltage-dependent calcium current by bradykinin. Neuron. 1994 Nov;13(5):1215–1224. doi: 10.1016/0896-6273(94)90059-0. [DOI] [PubMed] [Google Scholar]
- Wolsing D. H., Rosenbaum J. S. The mechanism for the rapid desensitization in bradykinin-stimulated inositol monophosphate production in NG108-15 cells involves interaction of a single receptor with multiple signaling pathways. J Pharmacol Exp Ther. 1993 Jul;266(1):253–261. [PubMed] [Google Scholar]
- Yokoyama S., Kimura Y., Taketo M., Black J. A., Ransom B. R., Higashida H. B2 bradykinin receptors in NG108-15 cells: cDNA cloning and functional expression. Biochem Biophys Res Commun. 1994 Apr 15;200(1):634–641. doi: 10.1006/bbrc.1994.1495. [DOI] [PubMed] [Google Scholar]
- Zachary I., Sinnett-Smith J., Rozengurt E. Bombesin, vasopressin, and endothelin stimulation of tyrosine phosphorylation in Swiss 3T3 cells. Identification of a novel tyrosine kinase as a major substrate. J Biol Chem. 1992 Sep 25;267(27):19031–19034. [PubMed] [Google Scholar]
- van Biesen T., Hawes B. E., Luttrell D. K., Krueger K. M., Touhara K., Porfiri E., Sakaue M., Luttrell L. M., Lefkowitz R. J. Receptor-tyrosine-kinase- and G beta gamma-mediated MAP kinase activation by a common signalling pathway. Nature. 1995 Aug 31;376(6543):781–784. doi: 10.1038/376781a0. [DOI] [PubMed] [Google Scholar]
- van Corven E. J., Hordijk P. L., Medema R. H., Bos J. L., Moolenaar W. H. Pertussis toxin-sensitive activation of p21ras by G protein-coupled receptor agonists in fibroblasts. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1257–1261. doi: 10.1073/pnas.90.4.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]