Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Nov 1;319(Pt 3):675–681. doi: 10.1042/bj3190675

Thermodynamic studies of substrate binding and spin transitions in human cytochrome P-450 3A4 expressed in yeast microsomes.

J P Renaud 1, D R Davydov 1, K P Heirwegh 1, D Mansuy 1, G H Hui Bon Hoa 1
PMCID: PMC1217842  PMID: 8920966

Abstract

An approach to the quantitative spectral analysis of substrate binding and inactivation of cytochrome P-450 in microsomes is described. The method is based on the application of the principal component analysis technique on the Soret-region spectra measured at different temperatures at various concentrations of substrate. This approach allowed us to study the thermodynamic parameters of substrate binding and spin transitions in human cytochrome P-450 3A4 expressed in yeast (Saccharomyces cerevisiae) microsomes. These parameters are discussed in comparison with the values reported earlier by Ristau et al. [(1979) Acta Biol. Med. Ger. 38, 177-185] for rabbit liver cytochrome P-450 2B4 in solution with benzphetamine as a substrate. Our analysis shows the substrate-free states of 2B4 and 3A4 to be very similar. However, substrate binding seems to perturb haem-protein interactions in 3A4 in contrast with 2B4, where the effect of substrate binding on the thermodynamic parameters of spin transitions was insignificant. The implication of the results for the mechanism of substrate-induced spin shift is discussed.

Full Text

The Full Text of this article is available as a PDF (817.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Backes W. L., Eyer C. S. Cytochrome P-450 LM2 reduction. Substrate effects on the rate of reductase-LM2 association. J Biol Chem. 1989 Apr 15;264(11):6252–6259. [PubMed] [Google Scholar]
  2. Backes W. L., Tamburini P. P., Jansson I., Gibson G. G., Sligar S. G., Schenkman J. B. Kinetics of cytochrome P-450 reduction: evidence for faster reduction of the high-spin ferric state. Biochemistry. 1985 Sep 10;24(19):5130–5136. doi: 10.1021/bi00340a026. [DOI] [PubMed] [Google Scholar]
  3. Cinti D. L., Sligar S. G., Gibson G. G., Schenkman J. B. Temperature-dependent spin equilibrium of microsomal and solubilized cytochrome P-450 from rat liver. Biochemistry. 1979 Jan 9;18(1):36–42. doi: 10.1021/bi00568a006. [DOI] [PubMed] [Google Scholar]
  4. Davydov D. R., Deprez E., Hoa G. H., Knyushko T. V., Kuznetsova G. P., Koen Y. M., Archakov A. I. High-pressure-induced transitions in microsomal cytochrome P450 2B4 in solution: evidence for conformational inhomogeneity in the oligomers. Arch Biochem Biophys. 1995 Jul 10;320(2):330–344. doi: 10.1016/0003-9861(95)90017-9. [DOI] [PubMed] [Google Scholar]
  5. Durell S. R., Lee C. H., Ross R. T., Gross E. L. Factor analysis of the near-ultraviolet absorption spectrum of plastocyanin using bilinear, trilinear, and quadrilinear models. Arch Biochem Biophys. 1990 Apr;278(1):148–160. doi: 10.1016/0003-9861(90)90243-r. [DOI] [PubMed] [Google Scholar]
  6. Gibson G. G., Cinti D. L., Sligar S. G., Schenkman J. B. The effect of microsomal lipids on the spin state of purified de-lipidated cytochrome P-450 [proceedings]. Biochem Soc Trans. 1979 Dec;7(6):1289–1290. doi: 10.1042/bst0071289. [DOI] [PubMed] [Google Scholar]
  7. Griffin B. W., Peterson J. A. Camphor binding by Pseudomonas putida cytochrome P-450. Kinetics and thermodynamics of the reaction. Biochemistry. 1972 Dec 5;11(25):4740–4746. doi: 10.1021/bi00775a017. [DOI] [PubMed] [Google Scholar]
  8. Guengerich F. P. Oxidation-reduction properties of rat liver cytochromes P-450 and NADPH-cytochrome p-450 reductase related to catalysis in reconstituted systems. Biochemistry. 1983 Jun 7;22(12):2811–2820. doi: 10.1021/bi00281a007. [DOI] [PubMed] [Google Scholar]
  9. Halaka F. G., Babcock G. T., Dye J. L. The use of principal component analysis to resolve the spectra and kinetics of cytochrome c oxidase reduction by 5,10-dihydro-5-methyl phenazine. Biophys J. 1985 Aug;48(2):209–219. doi: 10.1016/S0006-3495(85)83774-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hofrichter J., Sommer J. H., Henry E. R., Eaton W. A. Nanosecond absorption spectroscopy of hemoglobin: elementary processes in kinetic cooperativity. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2235–2239. doi: 10.1073/pnas.80.8.2235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hui Bon Hoa G., Di Primo C., Geze M., Douzou P., Kornblatt J. A., Sligar S. G. The formation of cytochrome P-450 from cytochrome P-420 is promoted by spermine. Biochemistry. 1990 Jul 24;29(29):6810–6815. doi: 10.1021/bi00481a008. [DOI] [PubMed] [Google Scholar]
  12. Imai Y., Sato R. Conversion of P-450 to P-420 by neutral salts and some other reagents. Eur J Biochem. 1967 Jun;1(4):419–426. doi: 10.1007/978-3-662-25813-2_57. [DOI] [PubMed] [Google Scholar]
  13. Jung C., Ristau O., Rein H. The high-spin/low-spin equilibrium in cytochrome P-450--a new method for determination of the high-spin content. Biochim Biophys Acta. 1991 Jan 8;1076(1):130–136. doi: 10.1016/0167-4838(91)90229-s. [DOI] [PubMed] [Google Scholar]
  14. Narasimhulu S. Substrate-induced spin-state transition in cytochrome P450LM2: a temperature-jump relaxation study. Biochemistry. 1993 Oct 5;32(39):10344–10350. doi: 10.1021/bi00090a009. [DOI] [PubMed] [Google Scholar]
  15. Peyronneau M. A., Renaud J. P., Jaouen M., Urban P., Cullin C., Pompon D., Mansuy D. Expression in yeast of three allelic cDNAs coding for human liver P-450 3A4. Different stabilities, binding properties and catalytic activities of the yeast-produced enzymes. Eur J Biochem. 1993 Dec 1;218(2):355–361. doi: 10.1111/j.1432-1033.1993.tb18384.x. [DOI] [PubMed] [Google Scholar]
  16. Peyronneau M. A., Renaud J. P., Truan G., Urban P., Pompon D., Mansuy D. Optimization of yeast-expressed human liver cytochrome P450 3A4 catalytic activities by coexpressing NADPH-cytochrome P450 reductase and cytochrome b5. Eur J Biochem. 1992 Jul 1;207(1):109–116. doi: 10.1111/j.1432-1033.1992.tb17027.x. [DOI] [PubMed] [Google Scholar]
  17. Rein H., Ristau O., Misselwitz R., Buder E., Ruckpaul K. The importance of the spin equilibrium in cytochrome P-450 for the reduction rate of the heme iron. Acta Biol Med Ger. 1979;38(2-3):187–200. [PubMed] [Google Scholar]
  18. Rein H., Ristau O. The importance of the high spin/low spin equilibrium existing in cytochrome P-450 for the enzymatic mechanism. Pharmazie. 1978 Jun;33(6):325–328. [PubMed] [Google Scholar]
  19. Ristau O., Rein H., Greschner S., Jänig G. R., Ruckpaul K. Quantitative analysis of the spin equilibrium of cytochrome P-450 LM2 fraction from rabbit liver microsomes. Acta Biol Med Ger. 1979;38(2-3):177–185. [PubMed] [Google Scholar]
  20. Ristau O., Rein H., Jänig G. R., Ruckpaul K. Quantitative analysis of the spin equilibrium of cytochrome P-450 LM-2 fraction from rabbit liver microsomes. Biochim Biophys Acta. 1978 Sep 26;536(1):226–234. doi: 10.1016/0005-2795(78)90068-5. [DOI] [PubMed] [Google Scholar]
  21. Shkumatov V. M., Smettan G., Ristau O., Rein H., Ruckpaul K., Chaschin V. L., Akhrem A. A. Quantitation of interaction between cytochrome P-450scc and adrenodoxin--analysis in the median UV-region by second derivative spectroscopy. Chem Biol Interact. 1988;68(1-2):71–83. doi: 10.1016/0009-2797(88)90007-5. [DOI] [PubMed] [Google Scholar]
  22. Sligar S. G. Coupling of spin, substrate, and redox equilibria in cytochrome P450. Biochemistry. 1976 Nov 30;15(24):5399–5406. doi: 10.1021/bi00669a029. [DOI] [PubMed] [Google Scholar]
  23. Tamburini P. P., Gibson G. G., Backes W. L., Sligar S. G., Schenkman J. B. Reduction kinetics of purified rat liver cytochrome P-450. Evidence for a sequential reaction mechanism dependent on the hemoprotein spin state. Biochemistry. 1984 Sep 25;23(20):4526–4533. doi: 10.1021/bi00315a004. [DOI] [PubMed] [Google Scholar]
  24. Tamburini P. P., Gibson G. G. Thermodynamic studies of the protein-protein interactions between cytochrome P-450 and cytochrome b5. Evidence for a central role of the cytochrome P-450 spin state in the coupling of substrate and cytochrome b5 binding to the terminal hemoprotein. J Biol Chem. 1983 Nov 25;258(22):13444–13452. [PubMed] [Google Scholar]
  25. Truan G., Cullin C., Reisdorf P., Urban P., Pompon D. Enhanced in vivo monooxygenase activities of mammalian P450s in engineered yeast cells producing high levels of NADPH-P450 reductase and human cytochrome b5. Gene. 1993 Mar 15;125(1):49–55. doi: 10.1016/0378-1119(93)90744-n. [DOI] [PubMed] [Google Scholar]
  26. Wagner S. L., Gray R. D. Effects of detergent on substrate binding and spin state of purified liver microsomal cytochrome P-450LM2 from phenobarbital-treated rabbits. Biochemistry. 1985 Jul 2;24(14):3809–3814. doi: 10.1021/bi00335a058. [DOI] [PubMed] [Google Scholar]
  27. Wells A. V., Li P., Champion P. M., Martinis S. A., Sligar S. G. Resonance Raman investigations of Escherichia coli-expressed Pseudomonas putida cytochrome P450 and P420. Biochemistry. 1992 May 12;31(18):4384–4393. doi: 10.1021/bi00133a002. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES