Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Nov 1;319(Pt 3):741–747. doi: 10.1042/bj3190741

Fourier transform IR spectroscopic study of hydration-induced structure changes in the solid state of omega-gliadins.

N Wellner 1, P S Belton 1, A S Tatham 1
PMCID: PMC1217851  PMID: 8920975

Abstract

The hydration of omega-gliadins and party deamidated and esterified omega-gliadins has been studied by Fourier transform IR spectroscopy. The secondary structure of the fully hydrated proteins was a mixture of beta-turns and extended chains, with a small amount of intermolecular beta-sheets. The absorption of the glutamine side chain amide groups contributed considerably to the amide I band with two well-defined peaks at 1658 and 1610 cm-1. the amide I band of the dry native sample could not be resolved into single component bands. There the backbone structure seemed to be distorted by extensive hydrogen bonding involving glutamine side chains. With increasing water content, these hydrogen bonds were broken successively by water molecules, resulting in an increase in extended, hydrated structures, which gave rise to the formation of intermolecular beta-sheet structures. Above 35% (w/w) water the beta-sheet content fell sharply and was replaced by extensively hydrated extended structures. An amide I band similar to dissolved poly-L-proline proved that parts of the polymer were in a solution-like state. The replacement of many glutamine side chains in the esterified protein produced more resolved secondary structures even in the dry sample. The beta-sheet content of the dry sample was higher than in the native omega-gliadins, but hydration generally caused very similar changes. At all hydration levels the spectra indicated a more ordered structure than in the native sample. Overall, the modification caused changes that go beyond the simple presence or absence of glutamine bands.

Full Text

The Full Text of this article is available as a PDF (498.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BECKWEITH A. C., WALL J. S., DIMLER R. J. AMIDE GROUPS AS INTERACTION SITES IN WHEAT GLUTEN PROTEINS: EFFECTS OF AMIDE-ESTER CONVERSION. Arch Biochem Biophys. 1963 Dec;103:319–330. doi: 10.1016/0003-9861(63)90421-1. [DOI] [PubMed] [Google Scholar]
  2. Belton P. S., Colquhoun I. J., Grant A., Wellner N., Field J. M., Shewry P. R., Tatham A. S. FTIR and NMR studies on the hydration of a high-M(r) subunit of glutenin. Int J Biol Macromol. 1995 Apr;17(2):74–80. doi: 10.1016/0141-8130(95)93520-8. [DOI] [PubMed] [Google Scholar]
  3. Belton P. S. NMR studies of protein hydration. Prog Biophys Mol Biol. 1994;61(1):61–79. [PubMed] [Google Scholar]
  4. Chirgadze Y. N., Fedorov O. V., Trushina N. P. Estimation of amino acid residue side-chain absorption in the infrared spectra of protein solutions in heavy water. Biopolymers. 1975 Apr;14(4):679–694. doi: 10.1002/bip.1975.360140402. [DOI] [PubMed] [Google Scholar]
  5. Dousseau F., Pézolet M. Determination of the secondary structure content of proteins in aqueous solutions from their amide I and amide II infrared bands. Comparison between classical and partial least-squares methods. Biochemistry. 1990 Sep 18;29(37):8771–8779. doi: 10.1021/bi00489a038. [DOI] [PubMed] [Google Scholar]
  6. Griebenow K., Klibanov A. M. Lyophilization-induced reversible changes in the secondary structure of proteins. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10969–10976. doi: 10.1073/pnas.92.24.10969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. KRULL L. H., WALL J. S., ZOBEL H., DIMLER R. J. SYNTHETIC POLYPEPTIDES CONTAINING SIDE-CHAIN AMIDE GROUPS: WATER-INSOLUBLE POLYMERS. Biochemistry. 1965 Apr;4:626–633. doi: 10.1021/bi00880a003. [DOI] [PubMed] [Google Scholar]
  8. Krimm S., Bandekar J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv Protein Chem. 1986;38:181–364. doi: 10.1016/s0065-3233(08)60528-8. [DOI] [PubMed] [Google Scholar]
  9. Mantsch H. H., Perczel A., Hollósi M., Fasman G. D. Characterization of beta-turns in cyclic hexapeptides in solution by Fourier transform IR spectroscopy. Biopolymers. 1993 Feb;33(2):201–207. doi: 10.1002/bip.360330202. [DOI] [PubMed] [Google Scholar]
  10. Matsushima N., Creutz C. E., Kretsinger R. H. Polyproline, beta-turn helices. Novel secondary structures proposed for the tandem repeats within rhodopsin, synaptophysin, synexin, gliadin, RNA polymerase II, hordein, and gluten. Proteins. 1990;7(2):125–155. doi: 10.1002/prot.340070204. [DOI] [PubMed] [Google Scholar]
  11. Pézolet M., Bonenfant S., Dousseau F., Popineau Y. Conformation of wheat gluten proteins. Comparison between functional and solution states as determined by infrared spectroscopy. FEBS Lett. 1992 Mar 16;299(3):247–250. doi: 10.1016/0014-5793(92)80125-z. [DOI] [PubMed] [Google Scholar]
  12. Saccomanno K., Spada A., Bassetti M., Gil-del-Alamo P., Faglia G. Immunodetection of chorionic gonadotropin and its subunits in human nonfunctioning pituitary adenomas. J Clin Endocrinol Metab. 1994 May;78(5):1103–1107. doi: 10.1210/jcem.78.5.7513714. [DOI] [PubMed] [Google Scholar]
  13. Shewry P. R., Miles M. J., Tatham A. S. The prolamin storage proteins of wheat and related cereals. Prog Biophys Mol Biol. 1994;61(1):37–59. [PubMed] [Google Scholar]
  14. Shewry P. R., Tatham A. S. The prolamin storage proteins of cereal seeds: structure and evolution. Biochem J. 1990 Apr 1;267(1):1–12. doi: 10.1042/bj2670001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Surewicz W. K., Mantsch H. H., Chapman D. Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry. 1993 Jan 19;32(2):389–394. doi: 10.1021/bi00053a001. [DOI] [PubMed] [Google Scholar]
  16. Swenson C. A., Formanek R. Infrared study of poly-L-proline in aqueous solution. J Phys Chem. 1967 Nov;71(12):4073–4077. doi: 10.1021/j100871a053. [DOI] [PubMed] [Google Scholar]
  17. Tatham A. S., Drake A. F., Shewry P. R. A conformational study of a glutamine- and proline-rich cereal seed protein, C hordein. Biochem J. 1985 Mar 1;226(2):557–562. doi: 10.1042/bj2260557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tatham A. S., Drake A. F., Shewry P. R. Conformational studies of a synthetic peptide corresponding to the repeat motif of C hordein. Biochem J. 1989 Apr 15;259(2):471–476. doi: 10.1042/bj2590471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tatham A. S., Shewry P. R., Belton P. S. 13C-n.m.r. study of C hordein. Biochem J. 1985 Dec 1;232(2):617–620. doi: 10.1042/bj2320617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Venyaminov SYu, Kalnin N. N. Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption bands. Biopolymers. 1990;30(13-14):1243–1257. doi: 10.1002/bip.360301309. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES