Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Nov 1;319(Pt 3):767–773. doi: 10.1042/bj3190767

Increased sensitivity to oxidative injury in chinese hamster ovary cells stably transfected with rat liver S-adenosylmethionine synthetase cDNA.

E Sánchez-Góngora 1, J G Pastorino 1, L Alvarez 1, M A Pajares 1, C García 1, J R Viña 1, J M Mato 1, J L Farber 1
PMCID: PMC1217855  PMID: 8920979

Abstract

Chinese hamster ovary cells were stably transfected with rat liver S-adenosylmethionine synthetase cDNA. As a result, S-adenosylmethionine synthetase activity increased 2.3-fold, an effect that was accompanied by increased S-adenosylmethionine, a depletion of ATP and NAD levels, elevation of the S-adenosylmethionine/S-adenosylhomocysteine ratio (the methylation ratio), increased DNA methylation and polyamine levels (spermidine and spermine), and normal GSH levels. By contrast, the transfected cells showed normal growth curves and morphology. Exposure to an oxidative stress by the addition of H2O2 resulted in a greater consumption of ATP and NAD in the transfected cells than in the wild-type cells. In turn, cell killing by H2O2 was greater in the transfected cells than in the wild-type cells. This killing of Chinese hamster ovary cells by H2O2 involved the activation of poly(ADP-ribose) polymerase with the resultant loss of NAD and ATP. 3-Aminobenzamide, an inhibitor of poly(ADP-ribose) polymerse, but not the antioxidant N,N'-diphenylphenylenediamine, prevented the killing of Chinese hamster ovary cells by H2O2 and maintained the contents of NAD and ATP. The results of this study indicate that a moderate activation of the synthesis of S-adenosylmethionine leads to ATP and NAD depletion and to a greater sensitivity to cell killing by oxidative stress.

Full Text

The Full Text of this article is available as a PDF (380.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez L., Asunción M., Corrales F., Pajares M. A., Mato J. M. Analysis of the 5' non-coding region of rat liver S-adenosylmethionine synthetase mRNA and comparison of the Mr deduced from the cDNA sequence and the purified enzyme. FEBS Lett. 1991 Sep 23;290(1-2):142–146. doi: 10.1016/0014-5793(91)81245-4. [DOI] [PubMed] [Google Scholar]
  2. Alvarez L., Corrales F., Martín-Duce A., Mato J. M. Characterization of a full-length cDNA encoding human liver S-adenosylmethionine synthetase: tissue-specific gene expression and mRNA levels in hepatopathies. Biochem J. 1993 Jul 15;293(Pt 2):481–486. doi: 10.1042/bj2930481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brigelius R., Muckel C., Akerboom T. P., Sies H. Identification and quantitation of glutathione in hepatic protein mixed disulfides and its relationship to glutathione disulfide. Biochem Pharmacol. 1983 Sep 1;32(17):2529–2534. doi: 10.1016/0006-2952(83)90014-x. [DOI] [PubMed] [Google Scholar]
  4. Brown N. D., Strickler M. P., Whaun J. M. Femtomolar ion-pair high-performance liquid chromatographic method for determining Dns-polyamine derivatives of red blood cell extracts utilizing an automated polyamine analyzer. J Chromatogr. 1982 Aug 6;245(1):101–108. doi: 10.1016/s0021-9673(00)82479-6. [DOI] [PubMed] [Google Scholar]
  5. Cabrero C., Puerta J., Alemany S. Purification and comparison of two forms of S-adenosyl-L-methionine synthetase from rat liver. Eur J Biochem. 1987 Dec 30;170(1-2):299–304. doi: 10.1111/j.1432-1033.1987.tb13699.x. [DOI] [PubMed] [Google Scholar]
  6. Chiang P. K., Richards H. H., Cantoni G. L. S-Adenosyl-L-homocysteine hydrolase: analogues of S-adenosyl-L-homocysteine as potential inhibitors. Mol Pharmacol. 1977 Sep;13(5):939–947. [PubMed] [Google Scholar]
  7. Christman J. K., Weich N., Schoenbrun B., Schneiderman N., Acs G. Hypomethylation of DNA during differentiation of Friend erythroleukemia cells. J Cell Biol. 1980 Aug;86(2):366–370. doi: 10.1083/jcb.86.2.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. De Clercq E. S-adenosylhomocysteine hydrolase inhibitors as broad-spectrum antiviral agents. Biochem Pharmacol. 1987 Aug 15;36(16):2567–2575. doi: 10.1016/0006-2952(87)90533-8. [DOI] [PubMed] [Google Scholar]
  9. Duce A. M., Ortíz P., Cabrero C., Mato J. M. S-adenosyl-L-methionine synthetase and phospholipid methyltransferase are inhibited in human cirrhosis. Hepatology. 1988 Jan-Feb;8(1):65–68. doi: 10.1002/hep.1840080113. [DOI] [PubMed] [Google Scholar]
  10. Finkelstein J. D., Kyle W. E., Martin J. L., Pick A. M. Activation of cystathionine synthase by adenosylmethionine and adenosylethionine. Biochem Biophys Res Commun. 1975 Sep 2;66(1):81–87. doi: 10.1016/s0006-291x(75)80297-x. [DOI] [PubMed] [Google Scholar]
  11. Finkelstein J. D., Martin J. J. Inactivation of betaine-homocysteine methyltransferase by adenosylmethionine and adenosylethionine. Biochem Biophys Res Commun. 1984 Jan 13;118(1):14–19. doi: 10.1016/0006-291x(84)91060-x. [DOI] [PubMed] [Google Scholar]
  12. Finkelstein J. D., Martin J. J. Methionine metabolism in mammals. Distribution of homocysteine between competing pathways. J Biol Chem. 1984 Aug 10;259(15):9508–9513. [PubMed] [Google Scholar]
  13. Garcia-Castro I., Mato J. M., Vasanthakumar G., Wiesmann W. P., Schiffmann E., Chiang P. K. Paradoxical effects of adenosine on neutrophil chemotaxis. J Biol Chem. 1983 Apr 10;258(7):4345–4349. [PubMed] [Google Scholar]
  14. Gaull G. E., Rassin D. K., Solomon G. E., Harris R. C., Sturman J. A. Biochemical observations on so-called hereditary tyrosinemia. Pediatr Res. 1970 Jul;4(4):337–344. doi: 10.1203/00006450-197007000-00004. [DOI] [PubMed] [Google Scholar]
  15. Gillies R. J., Didier N., Denton M. Determination of cell number in monolayer cultures. Anal Biochem. 1986 Nov 15;159(1):109–113. doi: 10.1016/0003-2697(86)90314-3. [DOI] [PubMed] [Google Scholar]
  16. Kane A. B., Petrovich D. R., Stern R. O., Farber J. L. ATP depletion and loss of cell integrity in anoxic hepatocytes and silica-treated P388D1 macrophages. Am J Physiol. 1985 Sep;249(3 Pt 1):C256–C266. doi: 10.1152/ajpcell.1985.249.3.C256. [DOI] [PubMed] [Google Scholar]
  17. Kutzbach C., Stokstad E. L. Feedback inhibition of methylene-tetrahydrofolate reductase in rat liver by S-adenosylmethionine. Biochim Biophys Acta. 1967 May 16;139(1):217–220. doi: 10.1016/0005-2744(67)90140-4. [DOI] [PubMed] [Google Scholar]
  18. Kutzbach C., Stokstad E. L. Mammalian methylenetetrahydrofolate reductase. Partial purification, properties, and inhibition by S-adenosylmethionine. Biochim Biophys Acta. 1971 Dec 15;250(3):459–477. doi: 10.1016/0005-2744(71)90247-6. [DOI] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Lindahl T., Satoh M. S., Poirier G. G., Klungland A. Post-translational modification of poly(ADP-ribose) polymerase induced by DNA strand breaks. Trends Biochem Sci. 1995 Oct;20(10):405–411. doi: 10.1016/s0968-0004(00)89089-1. [DOI] [PubMed] [Google Scholar]
  21. Malaisse W. J., Blachier F., Mourtada A., Camara J., Albor A., Valverde I., Sener A. Stimulus-secretion coupling of arginine-induced insulin release. Metabolism of L-arginine and L-ornithine in pancreatic islets. Biochim Biophys Acta. 1989 Sep 19;1013(2):133–143. doi: 10.1016/0167-4889(89)90041-4. [DOI] [PubMed] [Google Scholar]
  22. Markham G. D., Hafner E. W., Tabor C. W., Tabor H. S-Adenosylmethionine synthetase from Escherichia coli. J Biol Chem. 1980 Oct 10;255(19):9082–9092. [PubMed] [Google Scholar]
  23. Mingorance J., Alvarez L., Sánchez-Góngora E., Mato J. M., Pajares M. A. Site-directed mutagenesis of rat liver S-adenosylmethionine synthetase. Identification of a cysteine residue critical for the oligomeric state. Biochem J. 1996 May 1;315(Pt 3):761–766. doi: 10.1042/bj3150761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schraufstatter I. U., Hyslop P. A., Hinshaw D. B., Spragg R. G., Sklar L. A., Cochrane C. G. Hydrogen peroxide-induced injury of cells and its prevention by inhibitors of poly(ADP-ribose) polymerase. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4908–4912. doi: 10.1073/pnas.83.13.4908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Spitz D. R., Phillips J. W., Adams D. T., Sherman C. M., Deen D. F., Li G. C. Cellular resistance to oxidative stress is accompanied by resistance to cisplatin: the significance of increased catalase activity and total glutathione in hydrogen peroxide-resistant fibroblasts. J Cell Physiol. 1993 Jul;156(1):72–79. doi: 10.1002/jcp.1041560111. [DOI] [PubMed] [Google Scholar]
  27. Thies R. L., Autor A. P. Reactive oxygen injury to cultured pulmonary artery endothelial cells: mediation by poly(ADP-ribose) polymerase activation causing NAD depletion and altered energy balance. Arch Biochem Biophys. 1991 May 1;286(2):353–363. doi: 10.1016/0003-9861(91)90051-j. [DOI] [PubMed] [Google Scholar]
  28. Varela-Moreiras G., Alonso-Aperte E., Rubio M., Gassó M., Deulofeu R., Alvarez L., Caballería J., Rodés J., Mato J. M. Carbon tetrachloride-induced hepatic injury is associated with global DNA hypomethylation and homocysteinemia: effect of S-adenosylmethionine treatment. Hepatology. 1995 Oct;22(4 Pt 1):1310–1315. [PubMed] [Google Scholar]
  29. Yamamoto K., Farber J. L. Metabolism of pyridine nucleotides in cultured rat hepatocytes intoxicated with tert-butyl hydroperoxide. Biochem Pharmacol. 1992 Mar 3;43(5):1119–1126. doi: 10.1016/0006-2952(92)90620-x. [DOI] [PubMed] [Google Scholar]
  30. Yamamoto K., Tsukidate K., Farber J. L. Differing effects of the inhibition of poly(ADP-ribose) polymerase on the course of oxidative cell injury in hepatocytes and fibroblasts. Biochem Pharmacol. 1993 Aug 3;46(3):483–491. doi: 10.1016/0006-2952(93)90525-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES