Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Nov 1;319(Pt 3):823–827. doi: 10.1042/bj3190823

The biochemical characterization of a novel non-haem-iron hydroxylamine oxidase from Paracoccus denitrificans GB17.

J W Moir 1, J M Wehrfritz 1, S Spiro 1, D J Richardson 1
PMCID: PMC1217862  PMID: 8920986

Abstract

The characterization of the hydroxylamine oxidase from the heterotrophic nitrifier Paracoccus denitrificans GB17 indicates the enzyme to be entirely distinct from the hydroxylamine oxidase from the autotrophic nitrifier Nitrosomonas europaea. Hydroxylamine oxidase from P. denitrificans contains three to five non-haem, non-iron-sulphur iron atoms as prosthetic groups, predominantly co-ordinated by carboxylate ligands. The interaction of the enzyme with the electron-accepting proteins cytochrome C556 and pseudoazurin is mainly hydrophobic. The catalytic mechanism of hydroxylamine oxidase from P. denitrificans is different from the enzyme from N. europaea because the production of nitrite by the former requires molecular oxygen. Under anaerobic conditions the enzyme makes nitrous oxide as a sole product.

Full Text

The Full Text of this article is available as a PDF (322.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arciero D. M., Hooper A. B. Hydroxylamine oxidoreductase from Nitrosomonas europaea is a multimer of an octa-heme subunit. J Biol Chem. 1993 Jul 15;268(20):14645–14654. [PubMed] [Google Scholar]
  2. Chen V. J., Orville A. M., Harpel M. R., Frolik C. A., Surerus K. K., Münck E., Lipscomb J. D. Spectroscopic studies of isopenicillin N synthase. A mononuclear nonheme Fe2+ oxidase with metal coordination sites for small molecules and substrate. J Biol Chem. 1989 Dec 25;264(36):21677–21681. [PubMed] [Google Scholar]
  3. Moir J. W., Baratta D., Richardson D. J., Ferguson S. J. The purification of a cd1-type nitrite reductase from, and the absence of a copper-type nitrite reductase from, the aerobic denitrifier Thiosphaera pantotropha; the role of pseudoazurin as an electron donor. Eur J Biochem. 1993 Mar 1;212(2):377–385. doi: 10.1111/j.1432-1033.1993.tb17672.x. [DOI] [PubMed] [Google Scholar]
  4. Robertson L. A., Kuenen J. G. Combined heterotrophic nitrification and aerobic denitrification in Thiosphaera pantotropha and other bacteria. Antonie Van Leeuwenhoek. 1990 Apr;57(3):139–152. doi: 10.1007/BF00403948. [DOI] [PubMed] [Google Scholar]
  5. Samyn B., Berks B. C., Page M. D., Ferguson S. J., van Beeumen J. J. Characterisation and amino acid sequence of cytochrome c-550 from Thiosphaera pantotropha. Eur J Biochem. 1994 Jan 15;219(1-2):585–594. doi: 10.1111/j.1432-1033.1994.tb19974.x. [DOI] [PubMed] [Google Scholar]
  6. Terry K. R., Hooper A. B. Hydroxylamine oxidoreductase: a 20-heme, 200 000 molecular weight cytochrome c with unusual denaturation properties which forms a 63 000 molecular weight monomer after heme removal. Biochemistry. 1981 Nov 24;20(24):7026–7032. doi: 10.1021/bi00527a039. [DOI] [PubMed] [Google Scholar]
  7. Walsh T. A., Ballou D. P., Mayer R., Que L., Jr Rapid reaction studies on the oxygenation reactions of catechol dioxygenase. J Biol Chem. 1983 Dec 10;258(23):14422–14427. [PubMed] [Google Scholar]
  8. Wehrfritz J. M., Reilly A., Spiro S., Richardson D. J. Purification of hydroxylamine oxidase from Thiosphaera pantotropha. Identification of electron acceptors that couple heterotrophic nitrification to aerobic denitrification. FEBS Lett. 1993 Dec 6;335(2):246–250. doi: 10.1016/0014-5793(93)80739-h. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES