Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Nov 1;319(Pt 3):829–837. doi: 10.1042/bj3190829

Primary structure of the cytosolic beta-glucosidase of guinea pig liver.

W S Hays 1, S A Jenison 1, T Yamada 1, A Pastuszyn 1, R H Glew 1
PMCID: PMC1217863  PMID: 8920987

Abstract

The cytosolic beta-glucosidase (EC 3.2.1.21) present in the livers of mammalian species is distinguished by its broad specificity for sugars and its preference for hydrophobic aglycones. We purified the cytosolic beta-glucosidase from guinea pig liver and sequenced 142 amino acid residues contained within 12 trypsin digest fragments. Using degenerate oligonucleotide primers deduced from the peptide sequences, a 622 bp cytosolic beta-glucosidase cDNA was amplified by reverse-transcriptase PCR, using total guinea pig liver RNA as template. The 'rapid amplification of cDNA ends (RACE)' method [Frohman (1993) Methods Enzymol. 218, 340-356] was used to synthesize the remaining segments of the full-length cDNA. The complete cDNA contained 1671 nucleotides with an open reading frame coding for 469 amino acid residues. The amino acid sequence deduced from the cDNA sequence included the amino acid sequences of all 12 trypsin digest fragments derived from the purified enzyme. Amino acid sequence analysis indicates that the guinea pig liver cytosolic beta-glucosidase is a Family 1 beta-glycosidase and that it is most closely related to mammalian lactase-phlorizin hydrolase. These results suggest that the cytosolic beta-glucosidase and lactase-phlorizin hydrolase diverged from a common evolutionary precursor.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AURICCHIO S., RUBINO A., LANDOLT M., SEMENZA G., PRADER A. ISOLATED INTESTINAL LACTASE DEFICIENCY IN THE ADULT. Lancet. 1963 Aug 17;2(7303):324–326. doi: 10.1016/s0140-6736(63)92991-x. [DOI] [PubMed] [Google Scholar]
  2. Abrahams H. E., Robinson D. Beta-D-glucosidases and related enzymic activities in pig kidney. Biochem J. 1969 Mar;111(5):749–755. doi: 10.1042/bj1110749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  4. BRADY R. O., KANFER J. N., SHAPIRO D. METABOLISM OF GLUCOCEREBROSIDES. II. EVIDENCE OF AN ENZYMATIC DEFICIENCY IN GAUCHER'S DISEASE. Biochem Biophys Res Commun. 1965 Jan 18;18:221–225. doi: 10.1016/0006-291x(65)90743-6. [DOI] [PubMed] [Google Scholar]
  5. Barrett T., Suresh C. G., Tolley S. P., Dodson E. J., Hughes M. A. The crystal structure of a cyanogenic beta-glucosidase from white clover, a family 1 glycosyl hydrolase. Structure. 1995 Sep 15;3(9):951–960. doi: 10.1016/s0969-2126(01)00229-5. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. Cohen S. A., Strydom D. J. Amino acid analysis utilizing phenylisothiocyanate derivatives. Anal Biochem. 1988 Oct;174(1):1–16. doi: 10.1016/0003-2697(88)90512-x. [DOI] [PubMed] [Google Scholar]
  9. Colombo V., Lorenz-Meyer H., Semenza G. Small intestinal phlorizin hydrolase: the "beta-glycosidase complex". Biochim Biophys Acta. 1973 Dec 19;327(2):412–424. doi: 10.1016/0005-2744(73)90425-7. [DOI] [PubMed] [Google Scholar]
  10. DAHLQVIST A., HAMMOND J. B., CRANE R. K., DUNPHY J. V., LITTMAN A. INTESTINAL LACTASE DEFICIENCY AND LACTOSE INTOLERANCE IN ADULTS. PRELIMINARY REPORT. Gastroenterology. 1963 Oct;45:488–491. [PubMed] [Google Scholar]
  11. Daniels L. B., Coyle P. J., Chiao Y. B., Glew R. H., Labow R. S. Purification and characterization of a cytosolic broad specificity beta-glucosidase from human liver. J Biol Chem. 1981 Dec 25;256(24):13004–13013. [PubMed] [Google Scholar]
  12. Day A. G., Withers S. G. The purification and characterization of a beta-glucosidase from Alcaligenes faecalis. Biochem Cell Biol. 1986 Sep;64(9):914–922. doi: 10.1139/o86-122. [DOI] [PubMed] [Google Scholar]
  13. Freund J. N., Gossé F., Raul F. Derivatives of plant beta-glucans are hydrolyzed by intestinal lactase-phlorizin hydrolase of mammals. Enzyme. 1991;45(1-2):71–74. doi: 10.1159/000468868. [DOI] [PubMed] [Google Scholar]
  14. Frohman M. A. Rapid amplification of complementary DNA ends for generation of full-length complementary DNAs: thermal RACE. Methods Enzymol. 1993;218:340–356. doi: 10.1016/0076-6879(93)18026-9. [DOI] [PubMed] [Google Scholar]
  15. Glew R. H., Peters S. P., Christopher A. R. Isolation and characterization of beta-glucosidase from the cytosol of rat kidney cortex. Biochim Biophys Acta. 1976 Jan 23;422(1):179–199. doi: 10.1016/0005-2744(76)90018-8. [DOI] [PubMed] [Google Scholar]
  16. Gopalan V., Pastuszyn A., Galey W. R., Jr, Glew R. H. Exolytic hydrolysis of toxic plant glucosides by guinea pig liver cytosolic beta-glucosidase. J Biol Chem. 1992 Jul 15;267(20):14027–14032. [PubMed] [Google Scholar]
  17. Gopalan V., Vander Jagt D. J., Libell D. P., Glew R. H. Transglucosylation as a probe of the mechanism of action of mammalian cytosolic beta-glucosidase. J Biol Chem. 1992 May 15;267(14):9629–9638. [PubMed] [Google Scholar]
  18. Henrissat B., Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1993 Aug 1;293(Pt 3):781–788. doi: 10.1042/bj2930781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hultman T., Ståhl S., Hornes E., Uhlén M. Direct solid phase sequencing of genomic and plasmid DNA using magnetic beads as solid support. Nucleic Acids Res. 1989 Jul 11;17(13):4937–4946. doi: 10.1093/nar/17.13.4937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Keresztessy Z., Kiss L., Hughes M. A. Investigation of the active site of the cyanogenic beta-D-glucosidase (linamarase) from Manihot esculenta Crantz (cassava). II. Identification of Glu-198 as an active site carboxylate group with acid catalytic function. Arch Biochem Biophys. 1994 Dec;315(2):323–330. doi: 10.1006/abbi.1994.1507. [DOI] [PubMed] [Google Scholar]
  21. LaMarco K. L., Glew R. H. Hydrolysis of a naturally occurring beta-glucoside by a broad-specificity beta-glucosidase from liver. Biochem J. 1986 Jul 15;237(2):469–476. doi: 10.1042/bj2370469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mantei N., Villa M., Enzler T., Wacker H., Boll W., James P., Hunziker W., Semenza G. Complete primary structure of human and rabbit lactase-phlorizin hydrolase: implications for biosynthesis, membrane anchoring and evolution of the enzyme. EMBO J. 1988 Sep;7(9):2705–2713. doi: 10.1002/j.1460-2075.1988.tb03124.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McCarter J. D., Withers S. G. Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol. 1994 Dec;4(6):885–892. doi: 10.1016/0959-440x(94)90271-2. [DOI] [PubMed] [Google Scholar]
  24. Pinna L. A. Casein kinase 2: an 'eminence grise' in cellular regulation? Biochim Biophys Acta. 1990 Sep 24;1054(3):267–284. doi: 10.1016/0167-4889(90)90098-x. [DOI] [PubMed] [Google Scholar]
  25. Rao V. B. Direct sequencing of polymerase chain reaction-amplified DNA. Anal Biochem. 1994 Jan;216(1):1–14. doi: 10.1006/abio.1994.1001. [DOI] [PubMed] [Google Scholar]
  26. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  27. Tabor S., Richardson C. C. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4767–4771. doi: 10.1073/pnas.84.14.4767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wiesmann C., Beste G., Hengstenberg W., Schulz G. E. The three-dimensional structure of 6-phospho-beta-galactosidase from Lactococcus lactis. Structure. 1995 Sep 15;3(9):961–968. doi: 10.1016/s0969-2126(01)00230-1. [DOI] [PubMed] [Google Scholar]
  29. Woodgett J. R., Gould K. L., Hunter T. Substrate specificity of protein kinase C. Use of synthetic peptides corresponding to physiological sites as probes for substrate recognition requirements. Eur J Biochem. 1986 Nov 17;161(1):177–184. doi: 10.1111/j.1432-1033.1986.tb10139.x. [DOI] [PubMed] [Google Scholar]
  30. Yamada T., Wheeler C. M., Halpern A. L., Stewart A. C., Hildesheim A., Jenison S. A. Human papillomavirus type 16 variant lineages in United States populations characterized by nucleotide sequence analysis of the E6, L2, and L1 coding segments. J Virol. 1995 Dec;69(12):7743–7753. doi: 10.1128/jvi.69.12.7743-7753.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES