Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Nov 1;319(Pt 3):873–879. doi: 10.1042/bj3190873

Activation of Mac-1 (CD11b/CD18)-bound factor X by released cathepsin G defines an alternative pathway of leucocyte initiation of coagulation.

J Plescia 1, D C Altieri 1
PMCID: PMC1217869  PMID: 8920993

Abstract

Leucocyte initiation of coagulation preserves the haemostatic balance and may aberrantly contribute to vascular injury. In addition to the extrinsic activation mediated by tissue factor: factor VIIa, monocytes express an alternative procoagulant response after binding of the zymogen factor X to the integrin Mac-1 (CD11b/CD18). Here, factor X-activating activity was found in purified monocyte granules, and coincided with size-chromatographed fractions containing cathepsin G. In contrast, elastase-containing granule fractions did not activate factor X. In the presence of Ca2+ ions, purified cathepsin G, but not elastase, cleaved factor X to a approximately 54 kDa catalytically active derivative, structurally indistinguishable from the procoagulant product generated on monocytes after binding to Mac-1. Factor X activation by purified cathepsin G involved limited proteolysis of a novel Leu177-Leu178 peptide bond in the zymogen's activation peptide. Cathepsin G activation of factor X was completely inhibited by alpha 1 antichymotrypsin, or soybean trypsin inhibitor, or by a neutralizing antiserum to cathepsin G, while eglin, or an anti-elastase antibody, were ineffective. Affinity chromatography on active-site-dependent inhibitors Glu-Gly-Arg-chloromethyl ketone or benzamidine completely abolished factor Xa activity generated by cathepsin G. Cathepsin G was not constitutively detected on the monocyte surface by flow cytometry. However, inflammatory stimuli, including formyl peptide or phorbol ester, or Mac-1 engagement with its ligands fibrinogen, factor X or serum-opsonized zymosan, triggered monocyte degranulation and cathepsin G activation of factor X. These findings demonstrate that monocytes can alternatively initiate coagulation in a sequential three-step cascade, including (i) binding of factor X to Mac-1, (ii) discharge of azurophil granules, and (iii) limited proteolytic activation of membranebound factor X by cathepsin G. By rapidly forming thrombin and factor Xa in a protected membrane microenvironment, this pathway may contribute a "priming' signal for clotting, anticoagulation and vascular cell signal transduction, in vivo.

Full Text

The Full Text of this article is available as a PDF (324.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen D. H., Tracy P. B. Human coagulation factor V is activated to the functional cofactor by elastase and cathepsin G expressed at the monocyte surface. J Biol Chem. 1995 Jan 20;270(3):1408–1415. doi: 10.1074/jbc.270.3.1408. [DOI] [PubMed] [Google Scholar]
  2. Altieri D. C., Edgington T. S. Sequential receptor cascade for coagulation proteins on monocytes. Constitutive biosynthesis and functional prothrombinase activity of a membrane form of factor V/Va. J Biol Chem. 1989 Feb 15;264(5):2969–2972. [PubMed] [Google Scholar]
  3. Altieri D. C., Edgington T. S. The saturable high affinity association of factor X to ADP-stimulated monocytes defines a novel function of the Mac-1 receptor. J Biol Chem. 1988 May 25;263(15):7007–7015. [PubMed] [Google Scholar]
  4. Altieri D. C. Inflammatory cell participation in coagulation. Semin Cell Biol. 1995 Oct;6(5):269–274. doi: 10.1006/scel.1995.0036. [DOI] [PubMed] [Google Scholar]
  5. Altieri D. C. Molecular cloning of effector cell protease receptor-1, a novel cell surface receptor for the protease factor Xa. J Biol Chem. 1994 Feb 4;269(5):3139–3142. [PubMed] [Google Scholar]
  6. Altieri D. C., Morrissey J. H., Edgington T. S. Adhesive receptor Mac-1 coordinates the activation of factor X on stimulated cells of monocytic and myeloid differentiation: an alternative initiation of the coagulation protease cascade. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7462–7466. doi: 10.1073/pnas.85.20.7462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Anderssen T., Halvorsen H., Bajaj S. P., Osterud B. Human leukocyte elastase and cathepsin G inactivate factor VII by limited proteolysis. Thromb Haemost. 1993 Sep 1;70(3):414–417. [PubMed] [Google Scholar]
  8. Au B. T., Williams T. J., Collins P. D. Zymosan-induced IL-8 release from human neutrophils involves activation via the CD11b/CD18 receptor and endogenous platelet-activating factor as an autocrine modulator. J Immunol. 1994 Jun 1;152(11):5411–5419. [PubMed] [Google Scholar]
  9. Bainton D. F. Neutrophil granules. Br J Haematol. 1975 Jan;29(1):17–22. doi: 10.1111/j.1365-2141.1975.tb01795.x. [DOI] [PubMed] [Google Scholar]
  10. Baugh R. J., Travis J. Human leukocyte granule elastase: rapid isolation and characterization. Biochemistry. 1976 Feb 24;15(4):836–841. doi: 10.1021/bi00649a017. [DOI] [PubMed] [Google Scholar]
  11. Bergenfeldt M., Axelsson L., Ohlsson K. Release of neutrophil proteinase 4(3) and leukocyte elastase during phagocytosis and their interaction with proteinase inhibitors. Scand J Clin Lab Invest. 1992 Dec;52(8):823–829. doi: 10.3109/00365519209088387. [DOI] [PubMed] [Google Scholar]
  12. Bini A., Fenoglio J. J., Jr, Mesa-Tejada R., Kudryk B., Kaplan K. L. Identification and distribution of fibrinogen, fibrin, and fibrin(ogen) degradation products in atherosclerosis. Use of monoclonal antibodies. Arteriosclerosis. 1989 Jan-Feb;9(1):109–121. doi: 10.1161/01.atv.9.1.109. [DOI] [PubMed] [Google Scholar]
  13. Campbell E. J. Human leukocyte elastase, cathepsin G, and lactoferrin: family of neutrophil granule glycoproteins that bind to an alveolar macrophage receptor. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6941–6945. doi: 10.1073/pnas.79.22.6941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Campbell E. J., Silverman E. K., Campbell M. A. Elastase and cathepsin G of human monocytes. Quantification of cellular content, release in response to stimuli, and heterogeneity in elastase-mediated proteolytic activity. J Immunol. 1989 Nov 1;143(9):2961–2968. [PubMed] [Google Scholar]
  15. Colvin R. B., Johnson R. A., Mihm M. C., Jr, Dvorak H. F. Role of the clotting system in cell-mediated hypersensitivity. I. Fibrin deposition in delayed skin reactions in man. J Exp Med. 1973 Sep 1;138(3):686–698. doi: 10.1084/jem.138.3.686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Coughlin S. R. Thrombin receptor structure and function. Thromb Haemost. 1993 Jul 1;70(1):184–187. [PubMed] [Google Scholar]
  17. Creasey A. A., Chang A. C., Feigen L., Wün T. C., Taylor F. B., Jr, Hinshaw L. B. Tissue factor pathway inhibitor reduces mortality from Escherichia coli septic shock. J Clin Invest. 1993 Jun;91(6):2850–2860. doi: 10.1172/JCI116529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Daniel T. O., Gibbs V. C., Milfay D. F., Garovoy M. R., Williams L. T. Thrombin stimulates c-sis gene expression in microvascular endothelial cells. J Biol Chem. 1986 Jul 25;261(21):9579–9582. [PubMed] [Google Scholar]
  19. Davie E. W., Fujikawa K., Kisiel W. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry. 1991 Oct 29;30(43):10363–10370. doi: 10.1021/bi00107a001. [DOI] [PubMed] [Google Scholar]
  20. Drake T. A., Morrissey J. H., Edgington T. S. Selective cellular expression of tissue factor in human tissues. Implications for disorders of hemostasis and thrombosis. Am J Pathol. 1989 May;134(5):1087–1097. [PMC free article] [PubMed] [Google Scholar]
  21. Edgington T. S., Mackman N., Brand K., Ruf W. The structural biology of expression and function of tissue factor. Thromb Haemost. 1991 Jul 12;66(1):67–79. [PubMed] [Google Scholar]
  22. Esmon C. T. Thrombomodulin as a model of molecular mechanisms that modulate protease specificity and function at the vessel surface. FASEB J. 1995 Jul;9(10):946–955. doi: 10.1096/fasebj.9.10.7615164. [DOI] [PubMed] [Google Scholar]
  23. Fan S. T., Edgington T. S. Coupling of the adhesive receptor CD11b/CD18 to functional enhancement of effector macrophage tissue factor response. J Clin Invest. 1991 Jan;87(1):50–57. doi: 10.1172/JCI115000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
  25. Fung M. R., Hay C. W., MacGillivray R. T. Characterization of an almost full-length cDNA coding for human blood coagulation factor X. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3591–3595. doi: 10.1073/pnas.82.11.3591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Furie B., Furie B. C. Molecular and cellular biology of blood coagulation. N Engl J Med. 1992 Mar 19;326(12):800–806. doi: 10.1056/NEJM199203193261205. [DOI] [PubMed] [Google Scholar]
  27. Gordon S. G., Mourad A. M. The site of activation of factor X by cancer procoagulant. Blood Coagul Fibrinolysis. 1991 Dec;2(6):735–739. doi: 10.1097/00001721-199112000-00007. [DOI] [PubMed] [Google Scholar]
  28. Grandaliano G., Valente A. J., Abboud H. E. A novel biologic activity of thrombin: stimulation of monocyte chemotactic protein production. J Exp Med. 1994 May 1;179(5):1737–1741. doi: 10.1084/jem.179.5.1737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hoffman M., Monroe D. M., Roberts H. R. Human monocytes support factor X activation by factor VIIa, independent of tissue factor: implications for the therapeutic mechanism of high-dose factor VIIa in hemophilia. Blood. 1994 Jan 1;83(1):38–42. [PubMed] [Google Scholar]
  30. Horie S., Kita H. CD11b/CD18 (Mac-1) is required for degranulation of human eosinophils induced by human recombinant granulocyte-macrophage colony-stimulating factor and platelet-activating factor. J Immunol. 1994 Jun 1;152(11):5457–5467. [PubMed] [Google Scholar]
  31. Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. doi: 10.1016/0092-8674(92)90115-s. [DOI] [PubMed] [Google Scholar]
  32. Kárpáti J., Váradi K., Elödi S. Effect of granulocyte proteases on human coagulation factors IX and X. The protective effect of calcium. Hoppe Seylers Z Physiol Chem. 1982 May;363(5):521–525. [PubMed] [Google Scholar]
  33. LaRosa C. A., Rohrer M. J., Benoit S. E., Barnard M. R., Michelson A. D. Neutrophil cathepsin G modulates the platelet surface expression of the glycoprotein (GP) Ib-IX complex by proteolysis of the von Willebrand factor binding site on GPIb alpha and by a cytoskeletal-mediated redistribution of the remainder of the complex. Blood. 1994 Jul 1;84(1):158–168. [PubMed] [Google Scholar]
  34. Levi M., ten Cate H., Bauer K. A., van der Poll T., Edgington T. S., Büller H. R., van Deventer S. J., Hack C. E., ten Cate J. W., Rosenberg R. D. Inhibition of endotoxin-induced activation of coagulation and fibrinolysis by pentoxifylline or by a monoclonal anti-tissue factor antibody in chimpanzees. J Clin Invest. 1994 Jan;93(1):114–120. doi: 10.1172/JCI116934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Nathan C., Srimal S., Farber C., Sanchez E., Kabbash L., Asch A., Gailit J., Wright S. D. Cytokine-induced respiratory burst of human neutrophils: dependence on extracellular matrix proteins and CD11/CD18 integrins. J Cell Biol. 1989 Sep;109(3):1341–1349. doi: 10.1083/jcb.109.3.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Padmanabhan K., Padmanabhan K. P., Tulinsky A., Park C. H., Bode W., Huber R., Blankenship D. T., Cardin A. D., Kisiel W. Structure of human des(1-45) factor Xa at 2.2 A resolution. J Mol Biol. 1993 Aug 5;232(3):947–966. doi: 10.1006/jmbi.1993.1441. [DOI] [PubMed] [Google Scholar]
  37. Platt J. L., Vercellotti G. M., Dalmasso A. P., Matas A. J., Bolman R. M., Najarian J. S., Bach F. H. Transplantation of discordant xenografts: a review of progress. Immunol Today. 1990 Dec;11(12):450–457. doi: 10.1016/0167-5699(90)90174-8. [DOI] [PubMed] [Google Scholar]
  38. Plow E. F. Leukocyte elastase release during blood coagulation. A potential mechanism for activation of the alternative fibrinolytic pathway. J Clin Invest. 1982 Mar;69(3):564–572. doi: 10.1172/JCI110482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Ross G. D., Cain J. A., Lachmann P. J. Membrane complement receptor type three (CR3) has lectin-like properties analogous to bovine conglutinin as functions as a receptor for zymosan and rabbit erythrocytes as well as a receptor for iC3b. J Immunol. 1985 May;134(5):3307–3315. [PubMed] [Google Scholar]
  40. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993 Apr 29;362(6423):801–809. doi: 10.1038/362801a0. [DOI] [PubMed] [Google Scholar]
  41. Rozdzinski E., Sandros J., van der Flier M., Young A., Spellerberg B., Bhattacharyya C., Straub J., Musso G., Putney S., Starzyk R. Inhibition of leukocyte-endothelial cell interactions and inflammation by peptides from a bacterial adhesin which mimic coagulation factor X. J Clin Invest. 1995 Mar;95(3):1078–1085. doi: 10.1172/JCI117754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schmidt W., Egbring R., Havemann K. Effect of elastase-like and chymotrypsin-like neutral proteases from human granulocytes on isolated clotting factors. Thromb Res. 1975 Apr;6(4):315–329. doi: 10.1016/0049-3848(75)90081-x. [DOI] [PubMed] [Google Scholar]
  43. Selak M. A., Chignard M., Smith J. B. Cathepsin G is a strong platelet agonist released by neutrophils. Biochem J. 1988 Apr 1;251(1):293–299. doi: 10.1042/bj2510293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tanaka T., Minematsu Y., Reilly C. F., Travis J., Powers J. C. Human leukocyte cathepsin G. Subsite mapping with 4-nitroanilides, chemical modification, and effect of possible cofactors. Biochemistry. 1985 Apr 9;24(8):2040–2047. doi: 10.1021/bi00329a036. [DOI] [PubMed] [Google Scholar]
  45. Turkington P. T. Cathepsin G activates human factor V in vitro. Thromb Res. 1993 Nov 15;72(4):333–337. doi: 10.1016/0049-3848(93)90142-b. [DOI] [PubMed] [Google Scholar]
  46. Turkington P. T. Cathepsin G, a regulator of human vitamin K, dependent clotting factors and inhibitors. Thromb Res. 1992 Jul 15;67(2):147–155. doi: 10.1016/0049-3848(92)90134-v. [DOI] [PubMed] [Google Scholar]
  47. Turkington P. T. Degradation of human factor X by human polymorphonuclear leucocyte cathepsin G and elastase. Haemostasis. 1991;21(2):111–116. doi: 10.1159/000216213. [DOI] [PubMed] [Google Scholar]
  48. Worfolk L. A., Robinson R. A., Tracy P. B. Factor Xa interacts with two sites on monocytes with different functional activities. Blood. 1992 Oct 15;80(8):1989–1997. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES