Abstract
Mammalian phenylalanine hydroxylase (PAH) catalyses the conversion of L-phenylalanine to L-tyrosine in the presence of dioxygen and tetrahydrobiopterin; it is a highly regulated enzyme. Little is known about the rates of synthesis and degradation of PAH in vivo. The enzyme has been reported to have a half-life of approx. 2 days in rat liver and 7-8 h in rat hepatoma cells, but the mechanism of its degradation is not known. In the present study it is shown that the tetrameric form of the recombinant wild-type human enzyme is a substrate for the ubiquitin-conjugating enzyme system in the cytosolic fraction of rat testis. Our findings support the conclusion that multi-/poly-ubiquitination of human PAH plays a key role in the turnover of this cytosolic liver enzyme and provides a mechanism for the increased turnover observed for a number of recombinant mutant forms of the enzyme related to the metabolic disorder phenylketonuria, when expressed in eukaryotic cells.
Full Text
The Full Text of this article is available as a PDF (291.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker R. E., Jefferson L. S., Shiman R. Immunocytochemical identification of phenylalanine hydroxylase and albumin in cultured hepatoma cells and isolated rat hepatocytes. J Cell Biol. 1981 Jul;90(1):145–152. doi: 10.1083/jcb.90.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker R. E., Shiman R. Measurement of phenylalanine hydroxylase turnover in cultured hepatoma cells. J Biol Chem. 1979 Oct 10;254(19):9633–9639. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Chang N., Kaufman S., Milstien S. The mechanism of the irreversible inhibition ofrat liver phenylalanine hydroxylase due to treatment with p-chlorophenylalanine. The lack of effect on turnover of phenylalanine hydroxylase. J Biol Chem. 1979 Apr 25;254(8):2665–2668. [PubMed] [Google Scholar]
- Choo K. H., Cotton R. G., Danks D. M., Jennings I. G. Genetics of the mammalian phenylalanine hydroxylase system. Studies of human liver phenylalanine hydroxylase subunit structure and of mutations in phenylketonuria. Biochem J. 1979 Aug 1;181(2):285–294. doi: 10.1042/bj1810285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ciechanover A., Heller H., Elias S., Haas A. L., Hershko A. ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1365–1368. doi: 10.1073/pnas.77.3.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ciechanover A. The ubiquitin-proteasome proteolytic pathway. Cell. 1994 Oct 7;79(1):13–21. doi: 10.1016/0092-8674(94)90396-4. [DOI] [PubMed] [Google Scholar]
- Coux O., Tanaka K., Goldberg A. L. Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem. 1996;65:801–847. doi: 10.1146/annurev.bi.65.070196.004101. [DOI] [PubMed] [Google Scholar]
- Døskeland A. P., Martinez A., Knappskog P. M., Flatmark T. Phosphorylation of recombinant human phenylalanine hydroxylase: effect on catalytic activity, substrate activation and protection against non-specific cleavage of the fusion protein by restriction protease. Biochem J. 1996 Jan 15;313(Pt 2):409–414. doi: 10.1042/bj3130409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eiken H. G., Knappskog P. M., Apold J., Flatmark T. PKU mutation G46S is associated with increased aggregation and degradation of the phenylalanine hydroxylase enzyme. Hum Mutat. 1996;7(3):228–238. doi: 10.1002/(SICI)1098-1004(1996)7:3<228::AID-HUMU7>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
- Fagan J. M., Waxman L., Goldberg A. L. Skeletal muscle and liver contain a soluble ATP + ubiquitin-dependent proteolytic system. Biochem J. 1987 Apr 15;243(2):335–343. doi: 10.1042/bj2430335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Finley D., Chau V. Ubiquitination. Annu Rev Cell Biol. 1991;7:25–69. doi: 10.1146/annurev.cb.07.110191.000325. [DOI] [PubMed] [Google Scholar]
- Flatmark T., Sletten K. Multiple forms of cytochrome c in the rat. Precursor-product relationship between the main component Cy I and the minor components Cy II and Cy 3 in vivo. J Biol Chem. 1968 Apr 10;243(7):1623–1629. [PubMed] [Google Scholar]
- Fujii G., Tashiro K., Emori Y., Saigo K., Shiokawa K. Molecular cloning of cDNAs for two Xenopus proteasome subunits and their expression in adult tissues. Biochim Biophys Acta. 1993 Oct 19;1216(1):65–72. doi: 10.1016/0167-4781(93)90038-f. [DOI] [PubMed] [Google Scholar]
- Goldberg A. L., Rock K. L. Proteolysis, proteasomes and antigen presentation. Nature. 1992 Jun 4;357(6377):375–379. doi: 10.1038/357375a0. [DOI] [PubMed] [Google Scholar]
- Haas A. L., Bright P. M. The immunochemical detection and quantitation of intracellular ubiquitin-protein conjugates. J Biol Chem. 1985 Oct 15;260(23):12464–12473. [PubMed] [Google Scholar]
- Haas A. L., Bright P. M. The resolution and characterization of putative ubiquitin carrier protein isozymes from rabbit reticulocytes. J Biol Chem. 1988 Sep 15;263(26):13258–13267. [PubMed] [Google Scholar]
- Haas A. L., Murphy K. E., Bright P. M. The inactivation of ubiquitin accounts for the inability to demonstrate ATP, ubiquitin-dependent proteolysis in liver extracts. J Biol Chem. 1985 Apr 25;260(8):4694–4703. [PubMed] [Google Scholar]
- Hershko A., Heller H. Occurrence of a polyubiquitin structure in ubiquitin-protein conjugates. Biochem Biophys Res Commun. 1985 May 16;128(3):1079–1086. doi: 10.1016/0006-291x(85)91050-2. [DOI] [PubMed] [Google Scholar]
- Hilt W., Wolf D. H. Proteasomes of the yeast S. cerevisiae: genes, structure and functions. Mol Biol Rep. 1995;21(1):3–10. doi: 10.1007/BF00990964. [DOI] [PubMed] [Google Scholar]
- Jentsch S., Schlenker S. Selective protein degradation: a journey's end within the proteasome. Cell. 1995 Sep 22;82(6):881–884. doi: 10.1016/0092-8674(95)90021-7. [DOI] [PubMed] [Google Scholar]
- Jentsch S. The ubiquitin-conjugation system. Annu Rev Genet. 1992;26:179–207. doi: 10.1146/annurev.ge.26.120192.001143. [DOI] [PubMed] [Google Scholar]
- Kaufman S. The phenylalanine hydroxylating system. Adv Enzymol Relat Areas Mol Biol. 1993;67:77–264. doi: 10.1002/9780470123133.ch2. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lecocq R., Lamy F., Dumont J. E. Use of two-dimensional gel electrophoresis and autoradiography as a tool in cell biology: the example of the thyroid and the liver. Electrophoresis. 1990 Mar;11(3):200–212. doi: 10.1002/elps.1150110303. [DOI] [PubMed] [Google Scholar]
- Ledley F. D., Grenett H. E., Dunbar B. S., Woo S. L. Mouse phenylalanine hydroxylase. Homology and divergence from human phenylalanine hydroxylase. Biochem J. 1990 Apr 15;267(2):399–405. doi: 10.1042/bj2670399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loir M., Caraty A., Lanneau M., Menezo Y., Muh J. P., Sautiere P. Purification and characterization of ubiquitin from mammalian testis. FEBS Lett. 1984 Apr 24;169(2):199–204. doi: 10.1016/0014-5793(84)80318-x. [DOI] [PubMed] [Google Scholar]
- Martinez A., Knappskog P. M., Olafsdottir S., Døskeland A. P., Eiken H. G., Svebak R. M., Bozzini M., Apold J., Flatmark T. Expression of recombinant human phenylalanine hydroxylase as fusion protein in Escherichia coli circumvents proteolytic degradation by host cell proteases. Isolation and characterization of the wild-type enzyme. Biochem J. 1995 Mar 1;306(Pt 2):589–597. doi: 10.1042/bj3060589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matuschewski K., Hauser H. P., Treier M., Jentsch S. Identification of a novel family of ubiquitin-conjugating enzymes with distinct amino-terminal extensions. J Biol Chem. 1996 Feb 2;271(5):2789–2794. doi: 10.1074/jbc.271.5.2789. [DOI] [PubMed] [Google Scholar]
- Okano Y., Eisensmith R. C., Güttler F., Lichter-Konecki U., Konecki D. S., Trefz F. K., Dasovich M., Wang T., Henriksen K., Lou H. Molecular basis of phenotypic heterogeneity in phenylketonuria. N Engl J Med. 1991 May 2;324(18):1232–1238. doi: 10.1056/NEJM199105023241802. [DOI] [PubMed] [Google Scholar]
- Peters J. M. Proteasomes: protein degradation machines of the cell. Trends Biochem Sci. 1994 Sep;19(9):377–382. doi: 10.1016/0968-0004(94)90115-5. [DOI] [PubMed] [Google Scholar]
- Pogson C. I., Dickson A. J., Knowles R. G., Salter M., Santana M. A., Stanley J. C., Fisher M. J. Control of phenylalanine and tyrosine metabolism by phosphorylation mechanisms. Adv Enzyme Regul. 1986;25:309–327. doi: 10.1016/0065-2571(86)90021-x. [DOI] [PubMed] [Google Scholar]
- Schlesinger D. H., Goldstein G., Niall H. D. The complete amino acid sequence of ubiquitin, an adenylate cyclase stimulating polypeptide probably universal in living cells. Biochemistry. 1975 May 20;14(10):2214–2218. doi: 10.1021/bi00681a026. [DOI] [PubMed] [Google Scholar]
- Smith S. C., Kemp B. E., McAdam W. J., Mercer J. F., Cotton R. G. Two apparent molecular weight forms of human and monkey phenylalanine hydroxylase are due to phosphorylation. J Biol Chem. 1984 Sep 25;259(18):11284–11289. [PubMed] [Google Scholar]
- Ugai S., Tamura T., Tanahashi N., Takai S., Komi N., Chung C. H., Tanaka K., Ichihara A. Purification and characterization of the 26S proteasome complex catalyzing ATP-dependent breakdown of ubiquitin-ligated proteins from rat liver. J Biochem. 1993 Jun;113(6):754–768. doi: 10.1093/oxfordjournals.jbchem.a124116. [DOI] [PubMed] [Google Scholar]
- Wilkinson K. D., Audhya T. K. Stimulation of ATP-dependent proteolysis requires ubiquitin with the COOH-terminal sequence Arg-Gly-Gly. J Biol Chem. 1981 Sep 10;256(17):9235–9241. [PubMed] [Google Scholar]
- Wing S. S., Haas A. L., Goldberg A. L. Increase in ubiquitin-protein conjugates concomitant with the increase in proteolysis in rat skeletal muscle during starvation and atrophy denervation. Biochem J. 1995 May 1;307(Pt 3):639–645. doi: 10.1042/bj3070639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wing S. S., Jain P. Molecular cloning, expression and characterization of a ubiquitin conjugation enzyme (E2(17)kB) highly expressed in rat testis. Biochem J. 1995 Jan 1;305(Pt 1):125–132. doi: 10.1042/bj3050125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshimura T., Kameyama K., Takagi T., Ikai A., Tokunaga F., Koide T., Tanahashi N., Tamura T., Cejka Z., Baumeister W. Molecular characterization of the "26S" proteasome complex from rat liver. J Struct Biol. 1993 Nov-Dec;111(3):200–211. doi: 10.1006/jsbi.1993.1050. [DOI] [PubMed] [Google Scholar]