Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Nov 1;319(Pt 3):961–968. doi: 10.1042/bj3190961

Asp-49 is not an absolute prerequisite for the enzymic activity of low-M(r) phospholipases A2: purification, characterization and computer modelling of an enzymically active Ser-49 phospholipase A2, ecarpholin S, from the venom of Echis carinatus sochureki (saw-scaled viper).

J Polgár 1, E M Magnenat 1, M C Peitsch 1, T N Wells 1, K J Clemetson 1
PMCID: PMC1217882  PMID: 8921006

Abstract

Several studies have shown that Asp-49 is the residue that controls calcium binding in, and so plays a critical role in the calcium-mediated activation of, low-M(r) group I-III phospholipases A2 (PLA2s). The present paper provides experimental evidence that Asp-49 is not an absolute prerequisite for the enzymic activity of PLA2s, and that proteins with amino acid(s) other than Asp at position 49 can exhibit significant phospholipase activity. The purification, complete amino acid sequence and characterization of ecarpholin S, a PLA2 from Echis carinatus sochureki (saw-scaled viper) venom, is described. This single-chain, 122-amino-acid, basic (pI 7.9) protein is a group II PLA2. Although Asp-49 is replaced by Ser and Tyr-28 by Phe (both of these positions being involved in the Ca(2+)-binding site of PLA2s), the lipolysis of soybean phosphatidylcholine and egg yolk in the presence of 10 mM CaCl2 was 1.5 times and 2.9 times greater respectively with ecarpholin S than with recombinant human group II PLA2. The Ca(2+)-dependencies of the enzymic activities of ecarpholin S and rPLA2 were found to be similar. Ecarpholin S added to washed platelets induced aggregation; the presence of Ca2+ was a prerequisite for this platelet-aggregating effect. Computer modelling of the Ca(2+)-binding site of Ser-49 PLA2 compared with the Asp-49 and Lys-49 forms, for which crystallographic data exist, shows that the Ca(2+)-binding site is sterically blocked by Lys-49 but not by Ser-49; in the latter, the Ser hydroxy group may replace the Asp carboxylate in stabilization of Ca2+ binding. Sequence comparisons of ecarpholin S and other low-M(r) PLA2s predicts the presence of a Ser-49 group in the protein family of low-M(r) PLA2s that is distinct from the Asp-49 and Lys-49 groups.

Full Text

The Full Text of this article is available as a PDF (662.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arita H., Hanasaki K., Nakano T., Oka S., Teraoka H., Matsumoto K. Novel proliferative effect of phospholipase A2 in Swiss 3T3 cells via specific binding site. J Biol Chem. 1991 Oct 15;266(29):19139–19141. [PubMed] [Google Scholar]
  2. Arni R. K., Ward R. J., Gutierrez J. M., Tulinsky A. Structure of a calcium-independent phospholipase-like myotoxic protein from Bothrops asper venom. Acta Crystallogr D Biol Crystallogr. 1995 May 1;51(Pt 3):311–317. doi: 10.1107/S0907444994011455. [DOI] [PubMed] [Google Scholar]
  3. Chu S. T., Chu C. C., Tseng C. C., Chen Y. H. Met-8 of the beta 1-bungarotoxin phospholipase A2 subunit is essential for the phospholipase A2-independent neurotoxic effect. Biochem J. 1993 Nov 1;295(Pt 3):713–718. doi: 10.1042/bj2950713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cintra A. C., Marangoni S., Oliveira B., Giglio J. R. Bothropstoxin-I: amino acid sequence and function. J Protein Chem. 1993 Feb;12(1):57–64. doi: 10.1007/BF01024915. [DOI] [PubMed] [Google Scholar]
  5. Davidson F. F., Dennis E. A. Evolutionary relationships and implications for the regulation of phospholipase A2 from snake venom to human secreted forms. J Mol Evol. 1990 Sep;31(3):228–238. doi: 10.1007/BF02109500. [DOI] [PubMed] [Google Scholar]
  6. Dennis E. A. Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem. 1994 May 6;269(18):13057–13060. [PubMed] [Google Scholar]
  7. Dijkstra B. W., Kalk K. H., Hol W. G., Drenth J. Structure of bovine pancreatic phospholipase A2 at 1.7A resolution. J Mol Biol. 1981 Mar 25;147(1):97–123. doi: 10.1016/0022-2836(81)90081-4. [DOI] [PubMed] [Google Scholar]
  8. Díaz C., Alape A., Lomonte B., Olamendi T., Gutiérrez J. M. Cleavage of the NH2-terminal octapeptide of Bothrops asper myotoxic lysine-49 phospholipase A2 reduces its membrane-destabilizing effect. Arch Biochem Biophys. 1994 Aug 1;312(2):336–339. doi: 10.1006/abbi.1994.1317. [DOI] [PubMed] [Google Scholar]
  9. Francis B., Gutierrez J. M., Lomonte B., Kaiser I. I. Myotoxin II from Bothrops asper (Terciopelo) venom is a lysine-49 phospholipase A2. Arch Biochem Biophys. 1991 Feb 1;284(2):352–359. doi: 10.1016/0003-9861(91)90307-5. [DOI] [PubMed] [Google Scholar]
  10. Gelb M. H., Jain M. K., Hanel A. M., Berg O. G. Interfacial enzymology of glycerolipid hydrolases: lessons from secreted phospholipases A2. Annu Rev Biochem. 1995;64:653–688. doi: 10.1146/annurev.bi.64.070195.003253. [DOI] [PubMed] [Google Scholar]
  11. Holland D. R., Clancy L. L., Muchmore S. W., Ryde T. J., Einspahr H. M., Finzel B. C., Heinrikson R. L., Watenpaugh K. D. The crystal structure of a lysine 49 phospholipase A2 from the venom of the cottonmouth snake at 2.0-A resolution. J Biol Chem. 1990 Oct 15;265(29):17649–17656. doi: 10.2210/pdb1ppa/pdb. [DOI] [PubMed] [Google Scholar]
  12. Ishizaki J., Hanasaki K., Higashino K., Kishino J., Kikuchi N., Ohara O., Arita H. Molecular cloning of pancreatic group I phospholipase A2 receptor. J Biol Chem. 1994 Feb 25;269(8):5897–5904. [PubMed] [Google Scholar]
  13. Kini R. M., Evans H. J. A model to explain the pharmacological effects of snake venom phospholipases A2. Toxicon. 1989;27(6):613–635. doi: 10.1016/0041-0101(89)90013-5. [DOI] [PubMed] [Google Scholar]
  14. Kramer R. M., Hession C., Johansen B., Hayes G., McGray P., Chow E. P., Tizard R., Pepinsky R. B. Structure and properties of a human non-pancreatic phospholipase A2. J Biol Chem. 1989 Apr 5;264(10):5768–5775. [PubMed] [Google Scholar]
  15. Krizaj I., Bieber A. L., Ritonja A., Gubensek F. The primary structure of ammodytin L, a myotoxic phospholipase A2 homologue from Vipera ammodytes venom. Eur J Biochem. 1991 Dec 18;202(3):1165–1168. doi: 10.1111/j.1432-1033.1991.tb16485.x. [DOI] [PubMed] [Google Scholar]
  16. Krizaj I., Dolly J. O., Gubensek F. Identification of the neuronal acceptor in bovine cortex for ammodytoxin C, a presynaptically neurotoxic phospholipase A2. Biochemistry. 1994 Nov 22;33(46):13938–13945. doi: 10.1021/bi00250a049. [DOI] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Lambeau G., Ancian P., Barhanin J., Lazdunski M. Cloning and expression of a membrane receptor for secretory phospholipases A2. J Biol Chem. 1994 Jan 21;269(3):1575–1578. [PubMed] [Google Scholar]
  19. Lambeau G., Ancian P., Nicolas J. P., Beiboer S. H., Moinier D., Verheij H., Lazdunski M. Structural elements of secretory phospholipases A2 involved in the binding to M-type receptors. J Biol Chem. 1995 Mar 10;270(10):5534–5540. doi: 10.1074/jbc.270.10.5534. [DOI] [PubMed] [Google Scholar]
  20. Lambeau G., Barhanin J., Schweitz H., Qar J., Lazdunski M. Identification and properties of very high affinity brain membrane-binding sites for a neurotoxic phospholipase from the taipan venom. J Biol Chem. 1989 Jul 5;264(19):11503–11510. [PubMed] [Google Scholar]
  21. Lambeau G., Schmid-Alliana A., Lazdunski M., Barhanin J. Identification and purification of a very high affinity binding protein for toxic phospholipases A2 in skeletal muscle. J Biol Chem. 1990 Jun 5;265(16):9526–9532. [PubMed] [Google Scholar]
  22. Lennartz M. R., Wileman T. E., Stahl P. D. Isolation and characterization of a mannose-specific endocytosis receptor from rabbit alveolar macrophages. Biochem J. 1987 Aug 1;245(3):705–711. doi: 10.1042/bj2450705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Li Y., Yu B. Z., Zhu H., Jain M. K., Tsai M. D. Phospholipase A2 engineering. Structural and functional roles of the highly conserved active site residue aspartate-49. Biochemistry. 1994 Dec 13;33(49):14714–14722. doi: 10.1021/bi00253a009. [DOI] [PubMed] [Google Scholar]
  24. Liu C. S., Chen J. M., Chang C. H., Chen S. W., Teng C. M., Tsai I. H. The amino acid sequence and properties of an edema-inducing Lys-49 phospholipase A2 homolog from the venom of Trimeresurus mucrosquamatus. Biochim Biophys Acta. 1991 Apr 29;1077(3):362–370. doi: 10.1016/0167-4838(91)90552-b. [DOI] [PubMed] [Google Scholar]
  25. Liu C. S., Kuo P. Y., Chen J. M., Chen S. W., Chang C. H., Tseng C. C., Tzeng M. C., Lo T. B. Primary structure of an inactive mutant of phospholipase A2 in the venom of Bungarus fasciatus (banded krait). J Biochem. 1992 Nov;112(5):707–713. doi: 10.1093/oxfordjournals.jbchem.a123962. [DOI] [PubMed] [Google Scholar]
  26. Liu S. Y., Yoshizumi K., Oda N., Ohno M., Tokunaga F., Iwanaga S., Kihara H. Purification and amino acid sequence of basic protein II, a lysine-49-phospholipase A2 with low activity, from Trimeresurus flavoviridis venom. J Biochem. 1990 Mar;107(3):400–408. doi: 10.1093/oxfordjournals.jbchem.a123057. [DOI] [PubMed] [Google Scholar]
  27. Lôbo de Araújo A., Radvanyi F. Determination of phospholipase A2 activity by a colorimetric assay using a pH indicator. Toxicon. 1987;25(11):1181–1188. doi: 10.1016/0041-0101(87)90136-x. [DOI] [PubMed] [Google Scholar]
  28. Lüthy R., Bowie J. U., Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature. 1992 Mar 5;356(6364):83–85. doi: 10.1038/356083a0. [DOI] [PubMed] [Google Scholar]
  29. Maraganore J. M., Heinrikson R. L. The lysine-49 phospholipase A2 from the venom of Agkistrodon piscivorus piscivorus. Relation of structure and function to other phospholipases A2. J Biol Chem. 1986 Apr 15;261(11):4797–4804. [PubMed] [Google Scholar]
  30. Maraganore J. M., Merutka G., Cho W., Welches W., Kézdy F. J., Heinrikson R. L. A new class of phospholipases A2 with lysine in place of aspartate 49. Functional consequences for calcium and substrate binding. J Biol Chem. 1984 Nov 25;259(22):13839–13843. [PubMed] [Google Scholar]
  31. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  32. Nakai M., Nakashima K. I., Ogawa T., Shimohigashi Y., Hattori S., Chang C. C., Ohno M. Purification and primary structure of a myotoxic lysine-49 phospholipase A2 with low lipolytic activity from Trimeresurus gramineus venom. Toxicon. 1995 Nov;33(11):1469–1478. doi: 10.1016/0041-0101(95)00090-9. [DOI] [PubMed] [Google Scholar]
  33. Nieuwenhuizen W., Kunze H., de Haas G. H. Phospholipase A2 (phosphatide acylhydrolase, EC 3.1.1.4) from porcine pancreas. Methods Enzymol. 1974;32:147–154. doi: 10.1016/0076-6879(74)32018-6. [DOI] [PubMed] [Google Scholar]
  34. Parcej D. N., Dolly J. O. Dendrotoxin acceptor from bovine synaptic plasma membranes. Binding properties, purification and subunit composition of a putative constituent of certain voltage-activated K+ channels. Biochem J. 1989 Feb 1;257(3):899–903. doi: 10.1042/bj2570899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pedersen J. Z., Lomonte B., Massoud R., Gubensek F., Gutiérrez J. M., Rufini S. Autocatalytic acylation of phospholipase-like myotoxins. Biochemistry. 1995 Apr 11;34(14):4670–4675. doi: 10.1021/bi00014a021. [DOI] [PubMed] [Google Scholar]
  37. Peitsch M. C. ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Biochem Soc Trans. 1996 Feb;24(1):274–279. doi: 10.1042/bst0240274. [DOI] [PubMed] [Google Scholar]
  38. Renetseder R., Brunie S., Dijkstra B. W., Drenth J., Sigler P. B. A comparison of the crystal structures of phospholipase A2 from bovine pancreas and Crotalus atrox venom. J Biol Chem. 1985 Sep 25;260(21):11627–11634. [PubMed] [Google Scholar]
  39. Scott D. L., Achari A., Vidal J. C., Sigler P. B. Crystallographic and biochemical studies of the (inactive) Lys-49 phospholipase A2 from the venom of Agkistridon piscivorus piscivorus. J Biol Chem. 1992 Nov 5;267(31):22645–22657. [PubMed] [Google Scholar]
  40. Scott D. L., White S. P., Otwinowski Z., Yuan W., Gelb M. H., Sigler P. B. Interfacial catalysis: the mechanism of phospholipase A2. Science. 1990 Dec 14;250(4987):1541–1546. doi: 10.1126/science.2274785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Selistre de Araujo H. S., White S. P., Ownby C. L. cDNA cloning and sequence analysis of a lysine-49 phospholipase A2 myotoxin from Agkistrodon contortrix laticinctus snake venom. Arch Biochem Biophys. 1996 Feb 1;326(1):21–30. doi: 10.1006/abbi.1996.0042. [DOI] [PubMed] [Google Scholar]
  42. Shimohigashi Y., Tani A., Matsumoto H., Nakashima K., Yamaguchi Y. Lysine-49-phospholipases A2 from Trimeresurus flavoviridis venom are membrane-acting enzymes. J Biochem. 1995 Nov;118(5):1037–1044. doi: 10.1093/jb/118.5.1037. [DOI] [PubMed] [Google Scholar]
  43. Sippl M. J. Recognition of errors in three-dimensional structures of proteins. Proteins. 1993 Dec;17(4):355–362. doi: 10.1002/prot.340170404. [DOI] [PubMed] [Google Scholar]
  44. Taylor M. E., Conary J. T., Lennartz M. R., Stahl P. D., Drickamer K. Primary structure of the mannose receptor contains multiple motifs resembling carbohydrate-recognition domains. J Biol Chem. 1990 Jul 25;265(21):12156–12162. [PubMed] [Google Scholar]
  45. Thouin L. G., Jr, Ritonja A., Gubensek F., Russell F. E. Neuromuscular and lethal effects of phospholipase A from Vipera ammodytes venom. Toxicon. 1982;20(6):1051–1058. doi: 10.1016/0041-0101(82)90107-6. [DOI] [PubMed] [Google Scholar]
  46. Vadas P., Browning J., Edelson J., Pruzanski W. Extracellular phospholipase A2 expression and inflammation: the relationship with associated disease states. J Lipid Mediat. 1993 Aug;8(1):1–30. [PubMed] [Google Scholar]
  47. White S. P., Scott D. L., Otwinowski Z., Gelb M. H., Sigler P. B. Crystal structure of cobra-venom phospholipase A2 in a complex with a transition-state analogue. Science. 1990 Dec 14;250(4987):1560–1563. doi: 10.1126/science.2274787. [DOI] [PubMed] [Google Scholar]
  48. Yoshizumi K., Liu S. Y., Miyata T., Saita S., Ohno M., Iwanaga S., Kihara H. Purification and amino acid sequence of basic protein I, a lysine-49-phospholipase A2 with low activity, from the venom of Trimeresurus flavoviridis (Habu snake). Toxicon. 1990;28(1):43–54. doi: 10.1016/0041-0101(90)90005-r. [DOI] [PubMed] [Google Scholar]
  49. Zhu H., Dupureur C. M., Zhang X., Tsai M. D. Phospholipase A2 engineering. The roles of disulfide bonds in structure, conformational stability, and catalytic function. Biochemistry. 1995 Nov 21;34(46):15307–15314. doi: 10.1021/bi00046a040. [DOI] [PubMed] [Google Scholar]
  50. Zucker M. B. Platelet aggregation measured by the photometric method. Methods Enzymol. 1989;169:117–133. doi: 10.1016/0076-6879(89)69054-4. [DOI] [PubMed] [Google Scholar]
  51. van den Bergh C. J., Slotboom A. J., Verheij H. M., de Haas G. H. The role of aspartic acid-49 in the active site of phospholipase A2. A site-specific mutagenesis study of porcine pancreatic phospholipase A2 and the rationale of the enzymatic activity of [lysine49]phospholipase A2 from Agkistrodon piscivorus piscivorus' venom. Eur J Biochem. 1988 Sep 15;176(2):353–357. doi: 10.1111/j.1432-1033.1988.tb14288.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES