Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Nov 15;320(Pt 1):11–15. doi: 10.1042/bj3200011

Proinsulin processing in the rat insulinoma cell line INS after overexpression of the endoproteases PC2 or PC3 by recombinant adenovirus.

J C Irminger 1, K Meyer 1, P Halban 1
PMCID: PMC1217891  PMID: 8947461

Abstract

Proinsulin is converted to insulin by the two endoproteases PC2 and PC3. For complete conversion to insulin, cleavage must occur at both the B-chain/C-peptide and C-peptide/A-chain junctions of proinsulin. Studies in vitro have shown the specificity of PC3 for the B-chain/C-peptide junction and that of PC2 for the C-peptide/A-chain junction. In contrast, studies in vivo have suggested that the proinsulin cleavage substrate specificity of these two endoproteases might be more complex. We have now used recombinant adenovirus to overexpress PC2 or PC3 in the rat insulinoma cell line INS. These cells convert proinsulin more slowly than primary pancreatic beta-cells, possibly reflecting their lower levels of PC3. Infection of INS cells with the corresponding recombinant adenovirus led to 5-10-fold and 20-40-fold increases in PC2 and PC3 expression respectively. Recombinant adenovirus is thus an effective tool for expressing proteins at high levels in slow-growing INS cells. Overexpression of either PC2 or PC3 in INS cells led to a striking acceleration of conversion of proinsulin to insulin and to a decreased accumulation of the conversion intermediate des-64.65-split proinsulin (cleaved only at the A-chain/C-peptide junction). There was no detectable accumulation of des-31.32-split proinsulin (cleaved only at the B-chain /C-peptide junction) after overexpression of either enzyme. Taken together, the data indicate that when expressed at high levels, both PC2 and PC3 seem to be able to cleave proinsulin at both its junctions in vivo.

Full Text

The Full Text of this article is available as a PDF (291.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asfari M., Janjic D., Meda P., Li G., Halban P. A., Wollheim C. B. Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines. Endocrinology. 1992 Jan;130(1):167–178. doi: 10.1210/endo.130.1.1370150. [DOI] [PubMed] [Google Scholar]
  2. Bailyes E. M., Hutton J. C. Kinetic analysis of the type-1 proinsulin endopeptidase by a monoclonal antibody-based immunoadsorbent assay. Biochem J. 1992 Aug 15;286(Pt 1):223–229. doi: 10.1042/bj2860223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bailyes E. M., Shennan K. I., Seal A. J., Smeekens S. P., Steiner D. F., Hutton J. C., Docherty K. A member of the eukaryotic subtilisin family (PC3) has the enzymic properties of the type 1 proinsulin-converting endopeptidase. Biochem J. 1992 Jul 15;285(Pt 2):391–394. doi: 10.1042/bj2850391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Becker T. C., Noel R. J., Coats W. S., Gómez-Foix A. M., Alam T., Gerard R. D., Newgard C. B. Use of recombinant adenovirus for metabolic engineering of mammalian cells. Methods Cell Biol. 1994;43(Pt A):161–189. doi: 10.1016/s0091-679x(08)60603-2. [DOI] [PubMed] [Google Scholar]
  5. Bennett D. L., Bailyes E. M., Nielsen E., Guest P. C., Rutherford N. G., Arden S. D., Hutton J. C. Identification of the type 2 proinsulin processing endopeptidase as PC2, a member of the eukaryote subtilisin family. J Biol Chem. 1992 Jul 25;267(21):15229–15236. [PubMed] [Google Scholar]
  6. Bloomquist B. T., Eipper B. A., Mains R. E. Prohormone-converting enzymes: regulation and evaluation of function using antisense RNA. Mol Endocrinol. 1991 Dec;5(12):2014–2024. doi: 10.1210/mend-5-12-2014. [DOI] [PubMed] [Google Scholar]
  7. Davidson H. W., Hutton J. C. The insulin-secretory-granule carboxypeptidase H. Purification and demonstration of involvement in proinsulin processing. Biochem J. 1987 Jul 15;245(2):575–582. doi: 10.1042/bj2450575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davidson H. W., Rhodes C. J., Hutton J. C. Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic beta cell via two distinct site-specific endopeptidases. Nature. 1988 May 5;333(6168):93–96. doi: 10.1038/333093a0. [DOI] [PubMed] [Google Scholar]
  9. Docherty K., Rhodes C. J., Taylor N. A., Shennan K. I., Hutton J. C. Proinsulin endopeptidase substrate specificities defined by site-directed mutagenesis of proinsulin. J Biol Chem. 1989 Nov 5;264(31):18335–18339. [PubMed] [Google Scholar]
  10. Gómez-Foix A. M., Coats W. S., Baqué S., Alam T., Gerard R. D., Newgard C. B. Adenovirus-mediated transfer of the muscle glycogen phosphorylase gene into hepatocytes confers altered regulation of glycogen metabolism. J Biol Chem. 1992 Dec 15;267(35):25129–25134. [PubMed] [Google Scholar]
  11. Hakes D. J., Birch N. P., Mezey A., Dixon J. E. Isolation of two complementary deoxyribonucleic acid clones from a rat insulinoma cell line based on similarities to Kex2 and furin sequences and the specific localization of each transcript to endocrine and neuroendocrine tissues in rats. Endocrinology. 1991 Dec;129(6):3053–3063. doi: 10.1210/endo-129-6-3053. [DOI] [PubMed] [Google Scholar]
  12. Halban P. A., Irminger J. C. Sorting and processing of secretory proteins. Biochem J. 1994 Apr 1;299(Pt 1):1–18. doi: 10.1042/bj2990001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Halban P. A. Proinsulin processing in the regulated and the constitutive secretory pathway. Diabetologia. 1994 Sep;37 (Suppl 2):S65–S72. doi: 10.1007/BF00400828. [DOI] [PubMed] [Google Scholar]
  14. Irminger J. C., Vollenweider F. M., Neerman-Arbez M., Halban P. A. Human proinsulin conversion in the regulated and the constitutive pathways of transfected AtT20 cells. J Biol Chem. 1994 Jan 21;269(3):1756–1762. [PubMed] [Google Scholar]
  15. Kaufmann J. E., Irminger J. C., Halban P. A. Sequence requirements for proinsulin processing at the B-chain/C-peptide junction. Biochem J. 1995 Sep 15;310(Pt 3):869–874. doi: 10.1042/bj3100869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McGrory W. J., Bautista D. S., Graham F. L. A simple technique for the rescue of early region I mutations into infectious human adenovirus type 5. Virology. 1988 Apr;163(2):614–617. doi: 10.1016/0042-6822(88)90302-9. [DOI] [PubMed] [Google Scholar]
  17. Neerman-Arbez M., Cirulli V., Halban P. A. Levels of the conversion endoproteases PC1 (PC3) and PC2 distinguish between insulin-producing pancreatic islet beta cells and non-beta cells. Biochem J. 1994 May 15;300(Pt 1):57–61. doi: 10.1042/bj3000057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Neerman-Arbez M., Sizonenko S. V., Halban P. A. Slow cleavage at the proinsulin B-chain/connecting peptide junction associated with low levels of endoprotease PC1/3 in transformed beta cells. J Biol Chem. 1993 Aug 5;268(22):16098–16100. [PubMed] [Google Scholar]
  19. Peavy D. E., Brunner M. R., Duckworth W. C., Hooker C. S., Frank B. H. Receptor binding and biological potency of several split forms (conversion intermediates) of human proinsulin. Studies in cultured IM-9 lymphocytes and in vivo and in vitro in rats. J Biol Chem. 1985 Nov 15;260(26):13989–13994. [PubMed] [Google Scholar]
  20. Rhodes C. J., Lincoln B., Shoelson S. E. Preferential cleavage of des-31,32-proinsulin over intact proinsulin by the insulin secretory granule type II endopeptidase. Implication of a favored route for prohormone processing. J Biol Chem. 1992 Nov 15;267(32):22719–22727. [PubMed] [Google Scholar]
  21. Rouillé Y., Martin S., Steiner D. F. Differential processing of proglucagon by the subtilisin-like prohormone convertases PC2 and PC3 to generate either glucagon or glucagon-like peptide. J Biol Chem. 1995 Nov 3;270(44):26488–26496. doi: 10.1074/jbc.270.44.26488. [DOI] [PubMed] [Google Scholar]
  22. Schäfer M. K., Day R., Cullinan W. E., Chrétien M., Seidah N. G., Watson S. J. Gene expression of prohormone and proprotein convertases in the rat CNS: a comparative in situ hybridization analysis. J Neurosci. 1993 Mar;13(3):1258–1279. doi: 10.1523/JNEUROSCI.13-03-01258.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Seidah N. G., Chrétien M., Day R. The family of subtilisin/kexin like pro-protein and pro-hormone convertases: divergent or shared functions. Biochimie. 1994;76(3-4):197–209. doi: 10.1016/0300-9084(94)90147-3. [DOI] [PubMed] [Google Scholar]
  24. Sizonenko S. V., Halban P. A. Differential rates of conversion of rat proinsulins I and II. Evidence for slow cleavage at the B-chain/C-peptide junction of proinsulin II. Biochem J. 1991 Sep 15;278(Pt 3):621–625. doi: 10.1042/bj2780621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sizonenko S., Irminger J. C., Buhler L., Deng S., Morel P., Halban P. A. Kinetics of proinsulin conversion in human islets. Diabetes. 1993 Jun;42(6):933–936. doi: 10.2337/diab.42.6.933. [DOI] [PubMed] [Google Scholar]
  26. Smeekens S. P., Montag A. G., Thomas G., Albiges-Rizo C., Carroll R., Benig M., Phillips L. A., Martin S., Ohagi S., Gardner P. Proinsulin processing by the subtilisin-related proprotein convertases furin, PC2, and PC3. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8822–8826. doi: 10.1073/pnas.89.18.8822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Steiner D. F., Smeekens S. P., Ohagi S., Chan S. J. The new enzymology of precursor processing endoproteases. J Biol Chem. 1992 Nov 25;267(33):23435–23438. [PubMed] [Google Scholar]
  28. Vindrola O., Lindberg I. Biosynthesis of the prohormone convertase mPC1 in AtT-20 cells. Mol Endocrinol. 1992 Jul;6(7):1088–1094. doi: 10.1210/mend.6.7.1508222. [DOI] [PubMed] [Google Scholar]
  29. Vollenweider F., Kaufmann J., Irminger J. C., Halban P. A. Processing of proinsulin by furin, PC2, and PC3 in (co) transfected COS (monkey kidney) cells. Diabetes. 1995 Sep;44(9):1075–1080. doi: 10.2337/diab.44.9.1075. [DOI] [PubMed] [Google Scholar]
  30. Yudkin J. S. Circulating proinsulin-like molecules. J Diabetes Complications. 1993 Apr-Jun;7(2):113–123. doi: 10.1016/1056-8727(93)90036-x. [DOI] [PubMed] [Google Scholar]
  31. Zhou A., Mains R. E. Endoproteolytic processing of proopiomelanocortin and prohormone convertases 1 and 2 in neuroendocrine cells overexpressing prohormone convertases 1 or 2. J Biol Chem. 1994 Jul 1;269(26):17440–17447. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES