Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Nov 15;320(Pt 1):27–32. doi: 10.1042/bj3200027

Interaction between the two signal transduction systems of the histamine H2 receptor: desensitizing and sensitizing effects of histamine stimulation on histamine-dependent cAMP production in Chinese hamster ovary cells.

Y Fukushima 1, T Asano 1, H Katagiri 1, M Aihara 1, T Saitoh 1, M Anai 1, M Funaki 1, T Ogihara 1, K Inukai 1, N Matsuhashi 1, Y Oka 1, Y Yazaki 1, K Sugano 1
PMCID: PMC1217893  PMID: 8947463

Abstract

The histamine H2 receptor is a member of the family of G-protein-coupled receptors and is linked to the activation of adenylate cyclase phospholipase C (PLC). In this study we examined the effects of protein kinase C (PKC) activation in Chinese hamster ovary (CHO) cells stably expressing canine histamine H2 receptors. Pretreatment with 100 nM phorbol 12-myristate 13-acetate at 37 degrees C for 15 min led to significant potentiation of histamine-dependent and forskolin-dependent cAMP production, whereas the biologically inactive phorbol ester, 4 alpha-phorbol 12, 13-didecanoate, was without effect. These potentiating effects were abolished by preincubation with 0.5 microM bisindolylmaleimide, a PKC inhibitor. Thus the activation of PKCs seems to be involved in the potentiation of cAMP production by acting on a post-receptor mechanism. Preincubation of a CHO cell line, CHO-H2R, with 10 microM histamine for 30 min had two effects. Maximal histamine-dependent cAMP production and forskolin-dependent cAMP production were potentiated by 36% and 105.2% respectively. The other effect was a desensitization of the histamine-dependent adenylate cyclase response as demonstrated by a three-fold increase in EC50. Administration of 0.5 microM bisindolylmaleimide before preincubation of CHO-H2R with 10 microM histamine did not alter the desensitizing effect on cAMP production, but did abolish the sensitizing effect. Preincubation of CHO-H2R cells with 10 nM histamine resulted in moderate potentiation, which was also abolished by bisindolylmaleimide, but not in desensitization of the histamine-dependent cAMP production. Thus these results suggest that preincubation with histamine had a sensitizing effect on cAMP production mediated by PLC and PKC activation, as well as a desensitizing effect on the H2 receptor. The former effect is dependent on the intensity of PLC and PKC signals delivered by H2 receptors. The latter effect requires a higher concentration of histamine.

Full Text

The Full Text of this article is available as a PDF (268.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson N. G., Hanson P. J. Inhibition of gastric acid secretion by a phorbol ester: effect of 12-O-tetradecanoylphorbol-13-acetate on aminopyrine accumulation by rat parietal cells. Biochem Biophys Res Commun. 1984 Jun 15;121(2):566–572. doi: 10.1016/0006-291x(84)90219-5. [DOI] [PubMed] [Google Scholar]
  2. Bascands J. L., Pecher C., Girolami J. P. Indirect inhibition by bradykinin of cyclic AMP generation in isolated rat glomeruli and mesangial cells. Mol Pharmacol. 1993 Oct;44(4):818–826. [PubMed] [Google Scholar]
  3. Bell J. D., Buxton I. L., Brunton L. L. Enhancement of adenylate cyclase activity in S49 lymphoma cells by phorbol esters. Putative effect of C kinase on alpha s-GTP-catalytic subunit interaction. J Biol Chem. 1985 Mar 10;260(5):2625–2628. [PubMed] [Google Scholar]
  4. Bito H., Nakamura M., Honda Z., Izumi T., Iwatsubo T., Seyama Y., Ogura A., Kudo Y., Shimizu T. Platelet-activating factor (PAF) receptor in rat brain: PAF mobilizes intracellular Ca2+ in hippocampal neurons. Neuron. 1992 Aug;9(2):285–294. doi: 10.1016/0896-6273(92)90167-c. [DOI] [PubMed] [Google Scholar]
  5. Brown M. R., Chew C. S. Multiple effects of phorbol ester on secretory activity in rabbit gastric glands and parietal cells. Can J Physiol Pharmacol. 1987 Sep;65(9):1840–1847. doi: 10.1139/y87-286. [DOI] [PubMed] [Google Scholar]
  6. Chiba T., Fisher S. K., Agranoff B. W., Yamada T. Autoregulation of muscarinic and gastrin receptors on gastric parietal cells. Am J Physiol. 1989 Feb;256(2 Pt 1):G356–G363. doi: 10.1152/ajpgi.1989.256.2.G356. [DOI] [PubMed] [Google Scholar]
  7. Delvalle J., Wang L., Gantz I., Yamada T. Characterization of H2 histamine receptor: linkage to both adenylate cyclase and [Ca2+]i signaling systems. Am J Physiol. 1992 Dec;263(6 Pt 1):G967–G972. doi: 10.1152/ajpgi.1992.263.6.G967. [DOI] [PubMed] [Google Scholar]
  8. Fukushima Y., Oka Y., Katagiri H., Saitoh T., Asano T., Ishihara H., Matsuhashi N., Kodama T., Yazaki Y., Sugano K. Desensitization of canine histamine H2 receptor expressed in Chinese hamster ovary cells. Biochem Biophys Res Commun. 1993 Feb 15;190(3):1149–1155. doi: 10.1006/bbrc.1993.1170. [DOI] [PubMed] [Google Scholar]
  9. Fukushima Y., Oka Y., Saitoh T., Katagiri H., Asano T., Matsuhashi N., Takata K., van Breda E., Yazaki Y., Sugano K. Structural and functional analysis of the canine histamine H2 receptor by site-directed mutagenesis: N-glycosylation is not vital for its action. Biochem J. 1995 Sep 1;310(Pt 2):553–558. doi: 10.1042/bj3100553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gajtkowski G. A., Norris D. B., Rising T. J., Wood T. P. Specific binding of 3H-tiotidine to histamine H2 receptors in guinea pig cerebral cortex. Nature. 1983 Jul 7;304(5921):65–67. doi: 10.1038/304065a0. [DOI] [PubMed] [Google Scholar]
  11. Gantz I., Munzert G., Tashiro T., Schäffer M., Wang L., DelValle J., Yamada T. Molecular cloning of the human histamine H2 receptor. Biochem Biophys Res Commun. 1991 Aug 15;178(3):1386–1392. doi: 10.1016/0006-291x(91)91047-g. [DOI] [PubMed] [Google Scholar]
  12. Gantz I., Schäffer M., DelValle J., Logsdon C., Campbell V., Uhler M., Yamada T. Molecular cloning of a gene encoding the histamine H2 receptor. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):429–433. doi: 10.1073/pnas.88.2.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Garbarg M., Schwartz J. C. Synergism between histamine H1- and H2-receptors in the cAMP response in guinea pig brain slices: effects of phorbol esters and calcium. Mol Pharmacol. 1988 Jan;33(1):38–43. [PubMed] [Google Scholar]
  14. García-Sáinz J. A., Mendlovic F., Martínez-Olmedo M. A. Effects of phorbol esters on alpha 1-adrenergic-mediated and glucagon-mediated actions in isolated rat hepatocytes. Biochem J. 1985 May 15;228(1):277–280. doi: 10.1042/bj2280277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hatt J. F., Hanson P. J. Sites of action of protein kinase C on secretory activity in rat parietal cells. Am J Physiol. 1989 Jan;256(1 Pt 1):G129–G138. doi: 10.1152/ajpgi.1989.256.1.G129. [DOI] [PubMed] [Google Scholar]
  16. Honma M., Satoh T., Takezawa J., Ui M. An ultrasensitive method for the simultaneous determination of cyclic AMP and cyclic GMP in small-volume samples from blood and tissue. Biochem Med. 1977 Dec;18(3):257–273. doi: 10.1016/0006-2944(77)90060-6. [DOI] [PubMed] [Google Scholar]
  17. Jacobowitz O., Chen J., Premont R. T., Iyengar R. Stimulation of specific types of Gs-stimulated adenylyl cyclases by phorbol ester treatment. J Biol Chem. 1993 Feb 25;268(6):3829–3832. [PubMed] [Google Scholar]
  18. Karbon E. W., Shenolikar S., Enna S. J. Phorbol esters enhance neurotransmitter-stimulated cyclic AMP production in rat brain slices. J Neurochem. 1986 Nov;47(5):1566–1575. doi: 10.1111/j.1471-4159.1986.tb00796.x. [DOI] [PubMed] [Google Scholar]
  19. Mitsuhashi M., Mitsuhashi T., Payan D. G. Multiple signaling pathways of histamine H2 receptors. Identification of an H2 receptor-dependent Ca2+ mobilization pathway in human HL-60 promyelocytic leukemia cells. J Biol Chem. 1989 Nov 5;264(31):18356–18362. [PubMed] [Google Scholar]
  20. Morimoto B. H., Koshland D. E., Jr Conditional activation of cAMP signal transduction by protein kinase C. The effect of phorbol esters on adenylyl cyclase in permeabilized and intact cells. J Biol Chem. 1994 Feb 11;269(6):4065–4069. [PubMed] [Google Scholar]
  21. Quilliam L. A., Dobson P. R., Brown B. L. Modulation of cyclic AMP accumulation in GH3 cells by a phorbol ester and thyroliberin. Biochem Biophys Res Commun. 1985 Jun 28;129(3):898–903. doi: 10.1016/0006-291x(85)91976-x. [DOI] [PubMed] [Google Scholar]
  22. Ruat M., Traiffort E., Arrang J. M., Leurs R., Schwartz J. C. Cloning and tissue expression of a rat histamine H2-receptor gene. Biochem Biophys Res Commun. 1991 Sep 30;179(3):1470–1478. doi: 10.1016/0006-291x(91)91738-x. [DOI] [PubMed] [Google Scholar]
  23. Toullec D., Pianetti P., Coste H., Bellevergue P., Grand-Perret T., Ajakane M., Baudet V., Boissin P., Boursier E., Loriolle F. The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem. 1991 Aug 25;266(24):15771–15781. [PubMed] [Google Scholar]
  24. Yuan N., Friedman J., Whaley B. S., Clark R. B. cAMP-dependent protein kinase and protein kinase C consensus site mutations of the beta-adrenergic receptor. Effect on desensitization and stimulation of adenylylcyclase. J Biol Chem. 1994 Sep 16;269(37):23032–23038. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES