Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Nov 15;320(Pt 1):101–105. doi: 10.1042/bj3200101

Stimulation of the Ca(2+)-ATPase of sarcoplasmic reticulum by disulfiram.

A P Starling 1, J M East 1, A G Lee 1
PMCID: PMC1217903  PMID: 8947473

Abstract

Disulfiram [bis(diethylthiocarbamoyl)disulphide] has been found to stimulate reversibly the Ca(2+)-ATPase of skeletal muscle sarcoplasmic reticulum. At pH 7.2, 2.1 mM ATP and 25 degrees C, ATPase activity was found to double on addition of 120 microM disulfiram. Stimulation fitted to binding of disulfiram at a single site with a Kd of 61 microM. Disulfiram had no effect on the Ca2+ affinity of the ATPase or on the rate of phosphorylation of the ATPase by ATP, but increased the rate of dissociation of Ca2+ from the phosphorylated ATPase (the transport step) and increased the rate of dephosphorylation of the phosphorylated ATPase. It also decreased the level of phosphorylation of the ATPase by Pi, consistent with a 7.5-fold decrease in the equilibrium constant of the phosphorylated to non-phosphorylated forms (E2PMg/E2PiMg) at 80 microM disulfiram. Disulfiram had no significant effect on the concentration of ATP resulting in stimulation of ATPase activity, suggesting that it does not bind to the empty nucleotide-binding site on the phosphorylated ATPase. Studies of the effects of mixtures of disulfiram and jasmone (another molecule that stimulates the ATPase) suggest that they bind to separate sites on the ATPase.

Full Text

The Full Text of this article is available as a PDF (471.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clarke D. M., Loo T. W., MacLennan D. H. Functional consequences of alterations to polar amino acids located in the transmembrane domain of the Ca2(+)-ATPase of sarcoplasmic reticulum. J Biol Chem. 1990 Apr 15;265(11):6262–6267. [PubMed] [Google Scholar]
  2. Clarke D. M., Loo T. W., MacLennan D. H. The epitope for monoclonal antibody A20 (amino acids 870-890) is located on the luminal surface of the Ca2(+)-ATPase of sarcoplasmic reticulum. J Biol Chem. 1990 Oct 15;265(29):17405–17408. [PubMed] [Google Scholar]
  3. Davidson G. A., Berman M. C. Phosphoenzyme conformational states and nucleotide-binding site hydrophobicity following thiol modification of the Ca2+-ATPase of sarcoplasmic reticulum from skeletal muscle. J Biol Chem. 1987 May 25;262(15):7041–7046. [PubMed] [Google Scholar]
  4. Dupont Y., Pougeois R. Evaluation of H2O activity in the free or phosphorylated catalytic site of Ca2+-ATPase. FEBS Lett. 1983 May 30;156(1):93–98. doi: 10.1016/0014-5793(83)80255-5. [DOI] [PubMed] [Google Scholar]
  5. East J. M., Lee A. G. Lipid selectivity of the calcium and magnesium ion dependent adenosinetriphosphatase, studied with fluorescence quenching by a brominated phospholipid. Biochemistry. 1982 Aug 17;21(17):4144–4151. doi: 10.1021/bi00260a035. [DOI] [PubMed] [Google Scholar]
  6. Froud R. J., Lee A. G. A model for the phosphorylation of the Ca2+ + Mg2+-activated ATPase by phosphate. Biochem J. 1986 Jul 1;237(1):207–215. doi: 10.1042/bj2370207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gould G. W., East J. M., Froud R. J., McWhirter J. M., Stefanova H. I., Lee A. G. A kinetic model for the Ca2+ + Mg2+-activated ATPase of sarcoplasmic reticulum. Biochem J. 1986 Jul 1;237(1):217–227. doi: 10.1042/bj2370217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Green N. M. Evolutionary relationships within the family of P-type cation pumps. Ann N Y Acad Sci. 1992 Nov 30;671:104–112. doi: 10.1111/j.1749-6632.1992.tb43788.x. [DOI] [PubMed] [Google Scholar]
  9. Jencks W. P., Yang T., Peisach D., Myung J. Calcium ATPase of sarcoplasmic reticulum has four binding sites for calcium. Biochemistry. 1993 Jul 13;32(27):7030–7034. doi: 10.1021/bi00078a031. [DOI] [PubMed] [Google Scholar]
  10. Kawakita M., Yasuoka K., Kaziro Y. Selective modification of functionally distinct sulfhydryl groups of sarcoplasmic reticulum Ca2+,Mg2+-adenosine triphosphatase with N-ethylmaleimide. J Biochem. 1980 Feb;87(2):609–617. doi: 10.1093/oxfordjournals.jbchem.a132785. [DOI] [PubMed] [Google Scholar]
  11. Khan Y. M., Starling A. P., East J. M., Lee A. G. The mechanism of inhibition of the Ca(2+)-ATPase of skeletal-muscle sarcoplasmic reticulum by the cross-linker o-phthalaldehyde. Biochem J. 1996 Jul 15;317(Pt 2):439–445. doi: 10.1042/bj3170439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lee A. G., Baker K., Khan Y. M., East J. M. Effects of K+ on the binding of Ca2+ to the Ca(2+)-ATPase of sarcoplasmic reticulum. Biochem J. 1995 Jan 1;305(Pt 1):225–231. doi: 10.1042/bj3050225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lee A. G., Starling A. P., Ding J., East J. M., Wictome M. Lipid-protein interactions and Ca(2+)-ATPase function. Biochem Soc Trans. 1994 Aug;22(3):821–826. doi: 10.1042/bst0220821. [DOI] [PubMed] [Google Scholar]
  14. MacLennan D. H., Brandl C. J., Korczak B., Green N. M. Amino-acid sequence of a Ca2+ + Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature. 1985 Aug 22;316(6030):696–700. doi: 10.1038/316696a0. [DOI] [PubMed] [Google Scholar]
  15. Mata A. M., Matthews I., Tunwell R. E., Sharma R. P., Lee A. G., East J. M. Definition of surface-exposed and trans-membranous regions of the (Ca(2+)-Mg2+)-ATPase of sarcoplasmic reticulum using anti-peptide antibodies. Biochem J. 1992 Sep 1;286(Pt 2):567–580. doi: 10.1042/bj2860567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Matthews I., Sharma R. P., Lee A. G., East J. M. Transmembranous organization of (Ca2(+)-Mg2+)-ATPase from sarcoplasmic reticulum. Evidence for lumenal location of residues 877-888. J Biol Chem. 1990 Nov 5;265(31):18737–18740. [PubMed] [Google Scholar]
  17. Mignaco J. A., Lupi O. H., Santos F. T., Barrabin H., Scofano H. M. Two simultaneous binding sites for nucleotide analogs are kinetically distinguishable on the sarcoplasmic reticulum Ca(2+)-ATPase. Biochemistry. 1996 Apr 2;35(13):3886–3891. doi: 10.1021/bi9518353. [DOI] [PubMed] [Google Scholar]
  18. Myung J., Jencks W. P. Lumenal and cytoplasmic binding sites for calcium on the calcium ATPase of sarcoplasmic reticulum are different and independent. Biochemistry. 1994 Jul 26;33(29):8775–8785. doi: 10.1021/bi00195a020. [DOI] [PubMed] [Google Scholar]
  19. Myung J., Jencks W. P. There is only one phosphoenzyme intermediate with bound calcium on the reaction pathway of the sarcoplasmic reticulum calcium ATPase. Biochemistry. 1995 Mar 7;34(9):3077–3083. doi: 10.1021/bi00009a039. [DOI] [PubMed] [Google Scholar]
  20. Nagendra S. N., Rao K. M., Subhash M. N., Shetty K. T. Disulfiram lowers Ca2+, Mg(2+)-ATPase activity of rat brain synaptosomes. Neurochem Res. 1994 Dec;19(12):1509–1513. doi: 10.1007/BF00968998. [DOI] [PubMed] [Google Scholar]
  21. Orlowski S., Lund S., Møller J., Champeil P. Phosphoenzymes formed from Mg.ATP and Ca.ATP during pre-steady state kinetics of sarcoplasmic reticulum ATPase. J Biol Chem. 1988 Nov 25;263(33):17576–17583. [PubMed] [Google Scholar]
  22. Petithory J. R., Jencks W. P. Phosphorylation of the calcium adenosinetriphosphatase of sarcoplasmic reticulum: rate-limiting conformational change followed by rapid phosphoryl transfer. Biochemistry. 1986 Aug 12;25(16):4493–4497. doi: 10.1021/bi00364a006. [DOI] [PubMed] [Google Scholar]
  23. Reithmeier R. A., MacLennan D. H. The NH2 terminus of the (Ca2+ + Mg2+)-adenosine triphosphatase is located on the cytoplasmic surface of the sarcoplasmic reticulum membrane. J Biol Chem. 1981 Jun 25;256(12):5957–5960. [PubMed] [Google Scholar]
  24. Shigekawa M., Wakabayashi S., Nakamura H. Reaction mechanism of Ca2+-dependent adenosine triphosphatase of sarcoplasmic reticulum. ATP hydrolysis with CaATP as a substrate and role of divalent cation. J Biol Chem. 1983 Jul 25;258(14):8698–8707. [PubMed] [Google Scholar]
  25. Starling A. P., East J. M., Lee A. G. Effects of phospholipid fatty acyl chain length on phosphorylation and dephosphorylation of the Ca(2+)-ATPase. Biochem J. 1995 Sep 15;310(Pt 3):875–879. doi: 10.1042/bj3100875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Starling A. P., Hughes G., East J. M., Lee A. G. Mechanism of stimulation of the calcium adenosinetriphosphatase by jasmone. Biochemistry. 1994 Mar 15;33(10):3023–3031. doi: 10.1021/bi00176a035. [DOI] [PubMed] [Google Scholar]
  27. Stefanova H. I., East J. M., Gore M. G., Lee A. G. Labeling the (Ca(2+)-Mg2+)-ATPase of sarcoplasmic reticulum with 4-(bromomethyl)-6,7-dimethoxycoumarin: detection of conformational changes. Biochemistry. 1992 Jul 7;31(26):6023–6031. doi: 10.1021/bi00141a010. [DOI] [PubMed] [Google Scholar]
  28. Toyoshima C., Sasabe H., Stokes D. L. Three-dimensional cryo-electron microscopy of the calcium ion pump in the sarcoplasmic reticulum membrane. Nature. 1993 Apr 1;362(6419):467–471. doi: 10.1038/362469a0. [DOI] [PubMed] [Google Scholar]
  29. Vallari R. C., Pietruszko R. Human aldehyde dehydrogenase: mechanism of inhibition of disulfiram. Science. 1982 May 7;216(4546):637–639. doi: 10.1126/science.7071604. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES