Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Nov 15;320(Pt 1):129–135. doi: 10.1042/bj3200129

Production of the R2 subunit of ribonucleotide reductase from herpes simplex virus with prokaryotic and eukaryotic expression systems: higher activity of R2 produced by eukaryotic cells related to higher iron-binding capacity.

N Lamarche 1, G Matton 1, B Massie 1, M Fontecave 1, M Atta 1, F Dumas 1, P Gaudreau 1, Y Langelier 1
PMCID: PMC1217907  PMID: 8947477

Abstract

The R2 subunit of ribonucleotide reductase from herpes simplex virus type 2 was overproduced with prokaryotic and eukaryotic expression systems. The recombinant R2 purified by a two-step procedure exhibited a 3-fold higher activity when produced in eukaryotic cells. Precise quantification of the R2 concentration at each step of the purification indicated that the activity was not altered during the purification procedure. Moreover, we have observed that the level of R2 expression, in eukaryotic cells as well as in prokaryotic cells, did not influence R2 activity. Extensive characterization of the recombinant R2 purified from eukaryotic and prokaryotic expression systems has shown that both types of pure R2 preparations were similar in their 76 kDa dimer contents (more than 95%) and in their ability to bind the R1 subunit. However, we have found that the higher activity of R2 produced in eukaryotic cells is more probably related to a higher capability of binding the iron cofactor as well as a 3-fold greater ability to generate the tyrosyl free radical.

Full Text

The Full Text of this article is available as a PDF (321.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aberg A., Nordlund P., Eklund H. Unusual clustering of carboxyl side chains in the core of iron-free ribonucleotide reductase. Nature. 1993 Jan 21;361(6409):276–278. doi: 10.1038/361276a0. [DOI] [PubMed] [Google Scholar]
  2. Arfin S. M., Bradshaw R. A. Cotranslational processing and protein turnover in eukaryotic cells. Biochemistry. 1988 Oct 18;27(21):7979–7984. doi: 10.1021/bi00421a001. [DOI] [PubMed] [Google Scholar]
  3. Atkin C. L., Thelander L., Reichard P., Lang G. Iron and free radical in ribonucleotide reductase. Exchange of iron and Mössbauer spectroscopy of the protein B2 subunit of the Escherichia coli enzyme. J Biol Chem. 1973 Nov 10;248(21):7464–7472. [PubMed] [Google Scholar]
  4. Barlow T., Eliasson R., Platz A., Reichard P., Sjöberg B. M. Enzymic modification of a tyrosine residue to a stable free radical in ribonucleotide reductase. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1492–1495. doi: 10.1073/pnas.80.6.1492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Climent I., Sjöberg B. M., Huang C. Y. Site-directed mutagenesis and deletion of the carboxyl terminus of Escherichia coli ribonucleotide reductase protein R2. Effects on catalytic activity and subunit interaction. Biochemistry. 1992 May 26;31(20):4801–4807. doi: 10.1021/bi00135a009. [DOI] [PubMed] [Google Scholar]
  7. Cohen E. A., Charron J., Perret J., Langelier Y. Herpes simplex virus ribonucleotide reductase induced in infected BHK-21/C13 cells: biochemical evidence for the existence of two non-identical subunits, H1 and H2. J Gen Virol. 1985 Apr;66(Pt 4):733–745. doi: 10.1099/0022-1317-66-4-733. [DOI] [PubMed] [Google Scholar]
  8. Cohen E. A., Gaudreau P., Brazeau P., Langelier Y. Neutralization of herpes simplex virus ribonucleotide reductase activity by an oligopeptide-induced antiserum directed against subunit H2. J Virol. 1986 Dec;60(3):1130–1133. doi: 10.1128/jvi.60.3.1130-1133.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cohen E. A., Gaudreau P., Brazeau P., Langelier Y. Specific inhibition of herpesvirus ribonucleotide reductase by a nonapeptide derived from the carboxy terminus of subunit 2. Nature. 1986 May 22;321(6068):441–443. doi: 10.1038/321441a0. [DOI] [PubMed] [Google Scholar]
  10. Danik M., Suh M. Expression in bacteria of a polypeptide encoded by a transforming fragment of herpes simplex virus type 2. Cancer Detect Prev. 1991;15(2):107–113. [PubMed] [Google Scholar]
  11. Dutia B. M., Frame M. C., Subak-Sharpe J. H., Clark W. N., Marsden H. S. Specific inhibition of herpesvirus ribonucleotide reductase by synthetic peptides. Nature. 1986 May 22;321(6068):439–441. doi: 10.1038/321439a0. [DOI] [PubMed] [Google Scholar]
  12. Fontecave M., Gerez C., Mansuy D., Reichard P. Reduction of the Fe(III)-tyrosyl radical center of Escherichia coli ribonucleotide reductase by dithiothreitol. J Biol Chem. 1990 Jul 5;265(19):10919–10924. [PubMed] [Google Scholar]
  13. Fontecave M., Nordlund P., Eklund H., Reichard P. The redox centers of ribonucleotide reductase of Escherichia coli. Adv Enzymol Relat Areas Mol Biol. 1992;65:147–183. doi: 10.1002/9780470123119.ch4. [DOI] [PubMed] [Google Scholar]
  14. Furlong J., Conner J., McLauchlan J., Lankinen H., Galt C., Marsden H. S., Clements J. B. The large subunit of herpes simplex virus type 1 ribonucleotide reductase: expression in Escherichia coli and purification. Virology. 1991 Jun;182(2):846–851. doi: 10.1016/0042-6822(91)90627-n. [DOI] [PubMed] [Google Scholar]
  15. Goldstein D. J., Weller S. K. Factor(s) present in herpes simplex virus type 1-infected cells can compensate for the loss of the large subunit of the viral ribonucleotide reductase: characterization of an ICP6 deletion mutant. Virology. 1988 Sep;166(1):41–51. doi: 10.1016/0042-6822(88)90144-4. [DOI] [PubMed] [Google Scholar]
  16. Goldstein D. J., Weller S. K. Herpes simplex virus type 1-induced ribonucleotide reductase activity is dispensable for virus growth and DNA synthesis: isolation and characterization of an ICP6 lacZ insertion mutant. J Virol. 1988 Jan;62(1):196–205. doi: 10.1128/jvi.62.1.196-205.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Graham F. L., Smiley J., Russell W. C., Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol. 1977 Jul;36(1):59–74. doi: 10.1099/0022-1317-36-1-59. [DOI] [PubMed] [Google Scholar]
  18. Howell M. L., Sanders-Loehr J., Loehr T. M., Roseman N. A., Mathews C. K., Slabaugh M. B. Cloning of the vaccinia virus ribonucleotide reductase small subunit gene. Characterization of the gene product expressed in Escherichia coli. J Biol Chem. 1992 Jan 25;267(3):1705–1711. [PubMed] [Google Scholar]
  19. Ingemarson R., Gräslund A., Darling A., Thelander L. Herpes simplex virus ribonucleotide reductase: expression in Escherichia coli and purification to homogeneity of a tyrosyl free radical-containing, enzymatically active form of the 38-kilodalton subunit. J Virol. 1989 Sep;63(9):3769–3776. doi: 10.1128/jvi.63.9.3769-3776.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Krogsrud R. L., Welchner E., Scouten E., Liuzzi M. A solid-phase assay for the binding of peptidic subunit association inhibitors to the herpes simplex virus ribonucleotide reductase large subunit. Anal Biochem. 1993 Sep;213(2):386–394. doi: 10.1006/abio.1993.1436. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Lamarche N., Gaudreau P., Massie B., Langelier Y. Affinity of synthetic peptides for the HSV-2 ribonucleotide reductase R1 subunit measured with an iodinated photoaffinity peptide. Anal Biochem. 1994 Aug 1;220(2):315–320. doi: 10.1006/abio.1994.1343. [DOI] [PubMed] [Google Scholar]
  23. Lamarche N., Massie B., Richer M., Paradis H., Langelier Y. High level expression in 293 cells of the herpes simplex virus type 2 ribonucleotide reductase subunit 2 using an adenovirus vector. J Gen Virol. 1990 Aug;71(Pt 8):1785–1792. doi: 10.1099/0022-1317-71-8-1785. [DOI] [PubMed] [Google Scholar]
  24. Langelier Y., Déchamps M., Buttin G. Aanlysis of dCMP deaminase and CDP reductase levels in hamster cells infected by herpes simplex virus. J Virol. 1978 Jun;26(3):547–553. doi: 10.1128/jvi.26.3.547-553.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lankinen H., McLauchlan J., Weir M., Furlong J., Conner J., McGarrity A., Mistry A., Clements J. B., Marsden H. S. Purification and characterization of the herpes simplex virus type 1 ribonucleotide reductase small subunit following expression in Escherichia coli. J Gen Virol. 1991 Jun;72(Pt 6):1383–1392. doi: 10.1099/0022-1317-72-6-1383. [DOI] [PubMed] [Google Scholar]
  26. Laplante S. R., Aubry N., Liuzzi M., Thelander L., Ingemarson R., Moss N. The critical C-terminus of the small subunit of herpes simplex virus ribonucleotide reductase is mobile and conformationally similar to C-terminal peptides. Int J Pept Protein Res. 1994 Dec;44(6):549–555. doi: 10.1111/j.1399-3011.1994.tb01143.x. [DOI] [PubMed] [Google Scholar]
  27. Liuzzi M., Déziel R., Moss N., Beaulieu P., Bonneau A. M., Bousquet C., Chafouleas J. G., Garneau M., Jaramillo J., Krogsrud R. L. A potent peptidomimetic inhibitor of HSV ribonucleotide reductase with antiviral activity in vivo. Nature. 1994 Dec 15;372(6507):695–698. doi: 10.1038/372695a0. [DOI] [PubMed] [Google Scholar]
  28. Lynch J. B., Juarez-Garcia C., Münck E., Que L., Jr Mössbauer and EPR studies of the binuclear iron center in ribonucleotide reductase from Escherichia coli. A new iron-to-protein stoichiometry. J Biol Chem. 1989 May 15;264(14):8091–8096. [PubMed] [Google Scholar]
  29. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  30. Mann G. J., Gräslund A., Ochiai E., Ingemarson R., Thelander L. Purification and characterization of recombinant mouse and herpes simplex virus ribonucleotide reductase R2 subunit. Biochemistry. 1991 Feb 19;30(7):1939–1947. doi: 10.1021/bi00221a030. [DOI] [PubMed] [Google Scholar]
  31. Massie B., Dionne J., Lamarche N., Fleurent J., Langelier Y. Improved adenovirus vector provides herpes simplex virus ribonucleotide reductase R1 and R2 subunits very efficiently. Biotechnology (N Y) 1995 Jun;13(6):602–608. doi: 10.1038/nbt0695-602. [DOI] [PubMed] [Google Scholar]
  32. Merril C. R., Switzer R. C., Van Keuren M. L. Trace polypeptides in cellular extracts and human body fluids detected by two-dimensional electrophoresis and a highly sensitive silver stain. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4335–4339. doi: 10.1073/pnas.76.9.4335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Moss N., Beaulieu P., Duceppe J. S., Ferland J. M., Gauthier J., Ghiro E., Goulet S., Grenier L., Llinas-Brunet M., Plante R. Peptidomimetic inhibitors of herpes simplex virus ribonucleotide reductase: a new class of antiviral agents. J Med Chem. 1995 Sep 1;38(18):3617–3623. doi: 10.1021/jm00018a022. [DOI] [PubMed] [Google Scholar]
  34. Moss N., Déziel R., Ferland J. M., Goulet S., Jones P. J., Leonard S. F., Pitner T. P., Plante R. Herpes simplex virus ribonucleotide reductase subunit association inhibitors: the effect and conformation of beta-alkylated aspartic acid derivatives. Bioorg Med Chem. 1994 Sep;2(9):959–970. doi: 10.1016/s0968-0896(00)82045-3. [DOI] [PubMed] [Google Scholar]
  35. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  36. Nordlund P., Eklund H. Structure and function of the Escherichia coli ribonucleotide reductase protein R2. J Mol Biol. 1993 Jul 5;232(1):123–164. doi: 10.1006/jmbi.1993.1374. [DOI] [PubMed] [Google Scholar]
  37. Nordlund P., Sjöberg B. M., Eklund H. Three-dimensional structure of the free radical protein of ribonucleotide reductase. Nature. 1990 Jun 14;345(6276):593–598. doi: 10.1038/345593a0. [DOI] [PubMed] [Google Scholar]
  38. Nyholm S., Mann G. J., Johansson A. G., Bergeron R. J., Gräslund A., Thelander L. Role of ribonucleotide reductase in inhibition of mammalian cell growth by potent iron chelators. J Biol Chem. 1993 Dec 15;268(35):26200–26205. [PubMed] [Google Scholar]
  39. Nyholm S., Thelander L., Gräslund A. Reduction and loss of the iron center in the reaction of the small subunit of mouse ribonucleotide reductase with hydroxyurea. Biochemistry. 1993 Nov 2;32(43):11569–11574. doi: 10.1021/bi00094a013. [DOI] [PubMed] [Google Scholar]
  40. Ormö M., Sjöberg B. M. An ultrafiltration assay for nucleotide binding to ribonucleotide reductase. Anal Biochem. 1990 Aug 15;189(1):138–141. doi: 10.1016/0003-2697(90)90059-i. [DOI] [PubMed] [Google Scholar]
  41. Paradis H., Gaudreau P., Brazeau P., Langelier Y. Mechanism of inhibition of herpes simplex virus (HSV) ribonucleotide reductase by a nonapeptide corresponding to the carboxyl terminus of its subunit 2. Specific binding of a photoaffinity analog, [4'- azido-Phe6] HSV H2-6(6-15), to subunit 1. J Biol Chem. 1988 Nov 5;263(31):16045–16050. [PubMed] [Google Scholar]
  42. Reichard P. Interactions between deoxyribonucleotide and DNA synthesis. Annu Rev Biochem. 1988;57:349–374. doi: 10.1146/annurev.bi.57.070188.002025. [DOI] [PubMed] [Google Scholar]
  43. Scorer C. A., Carrier M. J., Rosenberger R. F. Amino acid misincorporation during high-level expression of mouse epidermal growth factor in Escherichia coli. Nucleic Acids Res. 1991 Jul 11;19(13):3511–3516. doi: 10.1093/nar/19.13.3511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sjöberg B. M., Karlsson M., Jörnvall H. Half-site reactivity of the tyrosyl radical of ribonucleotide reductase from Escherichia coli. J Biol Chem. 1987 Jul 15;262(20):9736–9743. [PubMed] [Google Scholar]
  45. Stubbe J. Ribonucleotide reductases. Adv Enzymol Relat Areas Mol Biol. 1990;63:349–419. doi: 10.1002/9780470123096.ch6. [DOI] [PubMed] [Google Scholar]
  46. Thelander L., Gräslund A., Thelander M. Continual presence of oxygen and iron required for mammalian ribonucleotide reduction: possible regulation mechanism. Biochem Biophys Res Commun. 1983 Feb 10;110(3):859–865. doi: 10.1016/0006-291x(83)91040-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES