Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Nov 15;320(Pt 1):167–171. doi: 10.1042/bj3200167

Calcium-dependent activation of Erk-1 and Erk-2 after hypo-osmotic astrocyte swelling.

F Schliess 1, R Sinning 1, R Fischer 1, C Schmalenbach 1, D Häussinger 1
PMCID: PMC1217912  PMID: 8947482

Abstract

The influence of hypo-osmotic cell swelling on the activity of the mitogen-activated protein (MAP) kinases Erk-1 and Erk-2 (where Erk stands for extracellular signal-regulated protein kinase) was studied in cultured rat astrocytes. Hypo-osmotic treatment led within 10 min to an increased activity of Erk-1 and Erk-2, which became maximal at 20 min and returned to the basal level within 60 min. Moreover, exposure to hypo-osmotic conditions induced a biphasic increase in cytosolic Ca2+ concentration ([Ca2+]i): a rapid peak-like increase was followed by a sustained plateau. The absence of extracellular Ca2+ completely abolished Erk activation as well as the plateau of the [Ca2+]i response after hypo-osmotic stimulation. Application of wortmannin and agents to elevate intracellular cAMP levels also completely blocked Erk activation but were without effect on the biphasic [Ca2+]i response to hypo-osmotic treatment of the cells, suggesting a role of PtdIns 3-kinase and the Ras/Raf pathway downstream of the calcium signal. Protein kinase C (PKC) and Ca2+/calmodulin (CaM)-dependent kinases are unlikely to play a role in the hypo-osmolarity-induced signalling towards MAP kinases, as revealed by the blockage of PKC and CaM kinases. Inhibition of tyrosine kinases, pertussis-toxin- or cholera-toxin-sensitive G-proteins and phospholipase C had no effect on the [Ca2+]i response; the Erk response to hypo-osmolarity was also largely unaltered. This is different from the swelling-induced MAP kinase activation in hepatocytes, which was shown to occur via a calcium-independent but G-protein- and tyrosine kinase-dependent mechanism. Thus osmo-signalling towards MAP kinases might exhibit cell-type-specific features.

Full Text

The Full Text of this article is available as a PDF (325.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiyama T., Ishida J., Nakagawa S., Ogawara H., Watanabe S., Itoh N., Shibuya M., Fukami Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem. 1987 Apr 25;262(12):5592–5595. [PubMed] [Google Scholar]
  2. Bender A. S., Neary J. T., Blicharska J., Norenberg L. O., Norenberg M. D. Role of calmodulin and protein kinase C in astrocytic cell volume regulation. J Neurochem. 1992 May;58(5):1874–1882. doi: 10.1111/j.1471-4159.1992.tb10064.x. [DOI] [PubMed] [Google Scholar]
  3. Bender A. S., Neary J. T., Norenberg M. D. Role of phosphoinositide hydrolysis in astrocyte volume regulation. J Neurochem. 1993 Oct;61(4):1506–1514. doi: 10.1111/j.1471-4159.1993.tb13646.x. [DOI] [PubMed] [Google Scholar]
  4. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  5. Burgering B. M., Pronk G. J., van Weeren P. C., Chardin P., Bos J. L. cAMP antagonizes p21ras-directed activation of extracellular signal-regulated kinase 2 and phosphorylation of mSos nucleotide exchange factor. EMBO J. 1993 Nov;12(11):4211–4220. doi: 10.1002/j.1460-2075.1993.tb06105.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burgering B. M., de Vries-Smits A. M., Medema R. H., van Weeren P. C., Tertoolen L. G., Bos J. L. Epidermal growth factor induces phosphorylation of extracellular signal-regulated kinase 2 via multiple pathways. Mol Cell Biol. 1993 Dec;13(12):7248–7256. doi: 10.1128/mcb.13.12.7248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chao T. S., Byron K. L., Lee K. M., Villereal M., Rosner M. R. Activation of MAP kinases by calcium-dependent and calcium-independent pathways. Stimulation by thapsigargin and epidermal growth factor. J Biol Chem. 1992 Oct 5;267(28):19876–19883. [PubMed] [Google Scholar]
  8. Chao T. S., Foster D. A., Rapp U. R., Rosner M. R. Differential Raf requirement for activation of mitogen-activated protein kinase by growth factors, phorbol esters, and calcium. J Biol Chem. 1994 Mar 11;269(10):7337–7341. [PubMed] [Google Scholar]
  9. Cheatham B., Vlahos C. J., Cheatham L., Wang L., Blenis J., Kahn C. R. Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol Cell Biol. 1994 Jul;14(7):4902–4911. doi: 10.1128/mcb.14.7.4902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cook S. J., McCormick F. Inhibition by cAMP of Ras-dependent activation of Raf. Science. 1993 Nov 12;262(5136):1069–1072. doi: 10.1126/science.7694367. [DOI] [PubMed] [Google Scholar]
  11. Crews C. M., Alessandrini A., Erikson R. L. The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science. 1992 Oct 16;258(5081):478–480. doi: 10.1126/science.1411546. [DOI] [PubMed] [Google Scholar]
  12. Cross D. A., Alessi D. R., Vandenheede J. R., McDowell H. E., Hundal H. S., Cohen P. The inhibition of glycogen synthase kinase-3 by insulin or insulin-like growth factor 1 in the rat skeletal muscle cell line L6 is blocked by wortmannin, but not by rapamycin: evidence that wortmannin blocks activation of the mitogen-activated protein kinase pathway in L6 cells between Ras and Raf. Biochem J. 1994 Oct 1;303(Pt 1):21–26. doi: 10.1042/bj3030021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dombro R. S., Hutson D. G., Norenberg M. D. The action of ammonia on astrocyte glycogen and glycogenolysis. Mol Chem Neuropathol. 1993 Aug;19(3):259–268. doi: 10.1007/BF03160004. [DOI] [PubMed] [Google Scholar]
  14. Finkenzeller G., Newsome W., Lang F., Häussinger D. Increase of c-jun mRNA upon hypo-osmotic cell swelling of rat hepatoma cells. FEBS Lett. 1994 Mar 7;340(3):163–166. doi: 10.1016/0014-5793(94)80129-0. [DOI] [PubMed] [Google Scholar]
  15. Flögel U., Niendorf T., Serkowa N., Brand A., Henke J., Leibfritz D. Changes in organic solutes, volume, energy state, and metabolism associated with osmotic stress in a glial cell line: a multinuclear NMR study. Neurochem Res. 1995 Jul;20(7):793–802. doi: 10.1007/BF00969691. [DOI] [PubMed] [Google Scholar]
  16. Gordon J. A. Use of vanadate as protein-phosphotyrosine phosphatase inhibitor. Methods Enzymol. 1991;201:477–482. doi: 10.1016/0076-6879(91)01043-2. [DOI] [PubMed] [Google Scholar]
  17. Häfner S., Adler H. S., Mischak H., Janosch P., Heidecker G., Wolfman A., Pippig S., Lohse M., Ueffing M., Kolch W. Mechanism of inhibition of Raf-1 by protein kinase A. Mol Cell Biol. 1994 Oct;14(10):6696–6703. doi: 10.1128/mcb.14.10.6696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Häussinger D., Laubenberger J., vom Dahl S., Ernst T., Bayer S., Langer M., Gerok W., Hennig J. Proton magnetic resonance spectroscopy studies on human brain myo-inositol in hypo-osmolarity and hepatic encephalopathy. Gastroenterology. 1994 Nov;107(5):1475–1480. doi: 10.1016/0016-5085(94)90552-5. [DOI] [PubMed] [Google Scholar]
  19. Häussinger D., Schliess F. Cell volume and hepatocellular function. J Hepatol. 1995 Jan;22(1):94–100. doi: 10.1016/0168-8278(95)80266-5. [DOI] [PubMed] [Google Scholar]
  20. Isaacks R. E., Bender A. S., Kim C. Y., Prieto N. M., Norenberg M. D. Osmotic regulation of myo-inositol uptake in primary astrocyte cultures. Neurochem Res. 1994 Mar;19(3):331–338. doi: 10.1007/BF00971582. [DOI] [PubMed] [Google Scholar]
  21. Isshiki K., Imoto M., Sawa T., Umezawa K., Takeuchi T., Umezawa H., Tsuchida T., Yoshioka T., Tatsuta K. Inhibition of tyrosine protein kinase by synthetic erbstatin analogs. J Antibiot (Tokyo) 1987 Aug;40(8):1209–1210. doi: 10.7164/antibiotics.40.1209. [DOI] [PubMed] [Google Scholar]
  22. Kimelberg H. K., Goderie S. K., Higman S., Pang S., Waniewski R. A. Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J Neurosci. 1990 May;10(5):1583–1591. doi: 10.1523/JNEUROSCI.10-05-01583.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mahadevan D., Thanki N., McPhie P., Beeler J. F., Yu J. C., Wlodawer A., Heidaran M. A. Comparison of calcium-dependent conformational changes in the N-terminal SH2 domains of p85 and GAP defines distinct properties for SH2 domains. Biochemistry. 1994 Jan 25;33(3):746–754. doi: 10.1021/bi00169a016. [DOI] [PubMed] [Google Scholar]
  24. Martiny-Baron G., Kazanietz M. G., Mischak H., Blumberg P. M., Kochs G., Hug H., Marmé D., Schächtele C. Selective inhibition of protein kinase C isozymes by the indolocarbazole Gö 6976. J Biol Chem. 1993 May 5;268(13):9194–9197. [PubMed] [Google Scholar]
  25. Norenberg M. D. Astrocyte responses to CNS injury. J Neuropathol Exp Neurol. 1994 May;53(3):213–220. doi: 10.1097/00005072-199405000-00001. [DOI] [PubMed] [Google Scholar]
  26. Noé B., Schliess F., Wettstein M., Heinrich S., Häussinger D. Regulation of taurocholate excretion by a hypo-osmolarity-activated signal transduction pathway in rat liver. Gastroenterology. 1996 Mar;110(3):858–865. doi: 10.1053/gast.1996.v110.pm8608896. [DOI] [PubMed] [Google Scholar]
  27. O'Connor E. R., Kimelberg H. K. Role of calcium in astrocyte volume regulation and in the release of ions and amino acids. J Neurosci. 1993 Jun;13(6):2638–2650. doi: 10.1523/JNEUROSCI.13-06-02638.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Paredes A., McManus M., Kwon H. M., Strange K. Osmoregulation of Na(+)-inositol cotransporter activity and mRNA levels in brain glial cells. Am J Physiol. 1992 Dec;263(6 Pt 1):C1282–C1288. doi: 10.1152/ajpcell.1992.263.6.C1282. [DOI] [PubMed] [Google Scholar]
  29. Reichenbach A. Glia:neuron index: review and hypothesis to account for different values in various mammals. Glia. 1989;2(2):71–77. doi: 10.1002/glia.440020202. [DOI] [PubMed] [Google Scholar]
  30. Salter M. W., Hicks J. L. ATP causes release of intracellular Ca2+ via the phospholipase C beta/IP3 pathway in astrocytes from the dorsal spinal cord. J Neurosci. 1995 Apr;15(4):2961–2971. doi: 10.1523/JNEUROSCI.15-04-02961.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Samuels M. L., Weber M. J., Bishop J. M., McMahon M. Conditional transformation of cells and rapid activation of the mitogen-activated protein kinase cascade by an estradiol-dependent human raf-1 protein kinase. Mol Cell Biol. 1993 Oct;13(10):6241–6252. doi: 10.1128/mcb.13.10.6241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schliess F., Schreiber R., Häussinger D. Activation of extracellular signal-regulated kinases Erk-1 and Erk-2 by cell swelling in H4IIE hepatoma cells. Biochem J. 1995 Jul 1;309(Pt 1):13–17. doi: 10.1042/bj3090013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schreiber R., Häussinger D. Characterization of the swelling-induced alkalinization of endocytotic vesicles in fluorescein isothiocyanate-dextran-loaded rat hepatocytes. Biochem J. 1995 Jul 1;309(Pt 1):19–24. doi: 10.1042/bj3090019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Thevelein J. M. Signal transduction in yeast. Yeast. 1994 Dec;10(13):1753–1790. doi: 10.1002/yea.320101308. [DOI] [PubMed] [Google Scholar]
  35. Tilly B. C., van den Berghe N., Tertoolen L. G., Edixhoven M. J., de Jonge H. R. Protein tyrosine phosphorylation is involved in osmoregulation of ionic conductances. J Biol Chem. 1993 Sep 25;268(27):19919–19922. [PubMed] [Google Scholar]
  36. Uehara T., Tokumitsu Y., Nomura Y. Wortmannin inhibits insulin-induced Ras and mitogen-activated protein kinase activation related to adipocyte differentiation in 3T3-L1 fibroblasts. Biochem Biophys Res Commun. 1995 May 16;210(2):574–580. doi: 10.1006/bbrc.1995.1698. [DOI] [PubMed] [Google Scholar]
  37. Waskiewicz A. J., Cooper J. A. Mitogen and stress response pathways: MAP kinase cascades and phosphatase regulation in mammals and yeast. Curr Opin Cell Biol. 1995 Dec;7(6):798–805. doi: 10.1016/0955-0674(95)80063-8. [DOI] [PubMed] [Google Scholar]
  38. Willis S. A., Nisen P. D. Differential induction of the mitogen-activated protein kinase pathway by bacterial lipopolysaccharide in cultured monocytes and astrocytes. Biochem J. 1996 Jan 15;313(Pt 2):519–524. doi: 10.1042/bj3130519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yang J. M., Chin K. V., Hait W. N. Involvement of phospholipase C in heat-shock-induced phosphorylation of P-glycoprotein in multidrug resistant human breast cancer cells. Biochem Biophys Res Commun. 1995 May 5;210(1):21–30. doi: 10.1006/bbrc.1995.1622. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES