Abstract
Rats were implanted with mini osmotic pumps delivering sodium [35S]sulphate and their newly synthesized proteoglycans were labelled over a 146 h period (steady-state labelling). Proteoglycan turnover was measured in vivo using a chase protocol. Glomerular proteoglycans were recovered quantitatively and the perlecan present was isolated by immunoprecipitation. The procedure allows newly synthesized proteoglycans to be quantified in mass units (pmol of glycossminoglycan sulphate) after labelling and during the chase. Ultrastructural-immunogold experiments identified the location of perlecan as the glomerular basement membrane and mesangial matrix. Perlecan in the basement membrane was quantified using the ultrastructural-immunogold technique. Perlecan comprises about 10% of the total glomerular proteoglycans, which are otherwise associated with glomerular cells and the mesangium. Both the total glomerular heparan sulphate proteoglycans and perlecan turn over rapidly (t1/2 approximately 3-4 h and < 3 h respectively). In contrast, turnover of proteoglycans in other tissues was slow, except in the liver where the heparan sulphate and chondroitin sulphate t1/2 values were 16 h and 9 h respectively. Microalbuminuria was induced with a low-dose regimen of puromycin aminonucleoside. At the onset of microalbuminuria (5 days) there was no change in the level of newly synthesized perlecan, or in perlecan in the glomerular basement membrane detected by immunogold labelling. Newly synthesized perlecan had undergone a minimal change in turnover rate by day 5 in puromycin aminonucleoside-treated rats. In contrast, the total glomerular proteoglycan population showed a dramatic decrease in turnover by day 5. Since there was no evidence of accumulation of glomerular proteoglycans on either day 5 or day 6, it is likely that decreased turnover of cell-associated proteoglycans is accompanied by an equivalent decrease in their synthesis.
Full Text
The Full Text of this article is available as a PDF (440.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beavan L. A., Davies M., Couchman J. R., Williams M. A., Mason R. M. In vivo turnover of the basement membrane and other heparan sulfate proteoglycans of rat glomerulus. Arch Biochem Biophys. 1989 Mar;269(2):576–585. doi: 10.1016/0003-9861(89)90143-4. [DOI] [PubMed] [Google Scholar]
- Beavan L. A., Davies M., Mason R. M. Renal glomerular proteoglycans. An investigation of their synthesis in vivo using a technique for fixation in situ. Biochem J. 1988 Apr 15;251(2):411–418. doi: 10.1042/bj2510411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bohrer M. P., Baylis C., Humes H. D., Glassock R. J., Robertson C. R., Brenner B. M. Permselectivity of the glomerular capillary wall. Facilitated filtration of circulating polycations. J Clin Invest. 1978 Jan;61(1):72–78. doi: 10.1172/JCI108927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bray J., Robinson G. B. Influence of charge on filtration across renal basement membrane films in vitro. Kidney Int. 1984 Mar;25(3):527–533. doi: 10.1038/ki.1984.49. [DOI] [PubMed] [Google Scholar]
- Caulfield J. P., Farquhar M. G. Loss of anionic sites from the glomerular basement membrane in aminonucleoside nephrosis. Lab Invest. 1978 Nov;39(5):505–512. [PubMed] [Google Scholar]
- Chang R. L., Ueki I. F., Troy J. L., Deen W. M., Robertson C. R., Brenner B. M. Permselectivity of the glomerular capillary wall to macromolecules. II. Experimental studies in rats using neutral dextran. Biophys J. 1975 Sep;15(9):887–906. doi: 10.1016/S0006-3495(75)85863-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Comper W. D., Glasgow E. F. Charge selectivity in kidney ultrafiltration. Kidney Int. 1995 May;47(5):1242–1251. doi: 10.1038/ki.1995.178. [DOI] [PubMed] [Google Scholar]
- Comper W. D., Lee A. S., Tay M., Adal Y. Anionic charge concentration of rat kidney glomeruli and glomerular basement membrane. Biochem J. 1993 Feb 1;289(Pt 3):647–652. doi: 10.1042/bj2890647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Couchman J. R. Heterogeneous distribution of a basement membrane heparan sulfate proteoglycan in rat tissues. J Cell Biol. 1987 Oct;105(4):1901–1916. doi: 10.1083/jcb.105.4.1901. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Couchman J. R., Kapoor R., Sthanam M., Wu R. R. Perlecan and basement membrane-chondroitin sulfate proteoglycan (bamacan) are two basement membrane chondroitin/dermatan sulfate proteoglycans in the Engelbreth-Holm-Swarm tumor matrix. J Biol Chem. 1996 Apr 19;271(16):9595–9602. doi: 10.1074/jbc.271.16.9595. [DOI] [PubMed] [Google Scholar]
- Deen W. M., Satvat B., Jamieson J. M. Theoretical model for glomerular filtration of charged solutes. Am J Physiol. 1980 Feb;238(2):F126–F139. doi: 10.1152/ajprenal.1980.238.2.F126. [DOI] [PubMed] [Google Scholar]
- Garin E. H., Shirey A. J. Glomerular basement membrane heparan sulfate glycosaminoglycan in aminonucleoside of puromycin nephrosis. Child Nephrol Urol. 1988;9(3):121–126. [PubMed] [Google Scholar]
- Groggel G. C., Hovingh P., Border W. A., Linker A. Changes in glomerular heparan sulfate in puromycin aminonucleoside nephrosis. Am J Pathol. 1987 Sep;128(3):521–527. [PMC free article] [PubMed] [Google Scholar]
- Hess H. H., Lees M. B., Derr J. E. A linear Lowry--Folin assay for both water-soluble and sodium dodecyl sulfate-solubilized proteins. Anal Biochem. 1978 Mar;85(1):295–300. doi: 10.1016/0003-2697(78)90304-4. [DOI] [PubMed] [Google Scholar]
- Hourani M. R., Mayor G. H., Greenbaum D. S., Hugget D. O., Patterson M. J. Hepatitis B surface antigen in urine of hemodialysis patients. Kidney Int. 1978 Apr;13(4):324–328. doi: 10.1038/ki.1978.46. [DOI] [PubMed] [Google Scholar]
- Imai Y., Yanagishita M., Hascall V. C. Measurement of contribution from intracellular cysteine to sulfate in phosphoadenosine phosphosulfate in rat ovarian granulosa cells. Arch Biochem Biophys. 1994 Aug 1;312(2):392–400. doi: 10.1006/abbi.1994.1324. [DOI] [PubMed] [Google Scholar]
- Iozzo R. V., Cohen I. R., Grässel S., Murdoch A. D. The biology of perlecan: the multifaceted heparan sulphate proteoglycan of basement membranes and pericellular matrices. Biochem J. 1994 Sep 15;302(Pt 3):625–639. doi: 10.1042/bj3020625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kanwar Y. S. Biophysiology of glomerular filtration and proteinuria. Lab Invest. 1984 Jul;51(1):7–21. [PubMed] [Google Scholar]
- Kanwar Y. S., Farquhar M. G. Isolation of glycosaminoglycans (heparan sulfate) from glomerular basement membranes. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4493–4497. doi: 10.1073/pnas.76.9.4493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kanwar Y. S., Farquhar M. G. Presence of heparan sulfate in the glomerular basement membrane. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1303–1307. doi: 10.1073/pnas.76.3.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kanwar Y. S., Jakubowski M. L. Unaltered anionic sites of glomerular basement membrane in aminonucleoside nephrosis. Kidney Int. 1984 Apr;25(4):613–618. doi: 10.1038/ki.1984.65. [DOI] [PubMed] [Google Scholar]
- Kanwar Y. S., Linker A., Farquhar M. G. Increased permeability of the glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparan sulfate) by enzyme digestion. J Cell Biol. 1980 Aug;86(2):688–693. doi: 10.1083/jcb.86.2.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klein D. J., Brown D. M., Oegema T. R., Brenchley P. E., Anderson J. C., Dickinson M. A., Horigan E. A., Hassell J. R. Glomerular basement membrane proteoglycans are derived from a large precursor. J Cell Biol. 1988 Mar;106(3):963–970. doi: 10.1083/jcb.106.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klein D. J., Dehnel P. J., Oegema T. R., Brown D. M. Alterations in proteoglycan metabolism in the nephrotic syndrome induced by the aminonucleoside of puromycin. Lab Invest. 1984 May;50(5):543–551. [PubMed] [Google Scholar]
- Kobayashi S., Nagase M., Honda N., Adachi K., Ichinose N., Hishida A. Analysis of anionic charge of the glomerular basement membrane in aminonucleoside nephrosis. Kidney Int. 1989 Jun;35(6):1405–1408. doi: 10.1038/ki.1989.140. [DOI] [PubMed] [Google Scholar]
- Ledbetter S. R., Tyree B., Hassell J. R., Horigan E. A. Identification of the precursor protein to basement membrane heparan sulfate proteoglycans. J Biol Chem. 1985 Jul 5;260(13):8106–8113. [PubMed] [Google Scholar]
- Ledbetter S. R., Tyree B., Hassell J. R., Horigan E. A. Identification of the precursor protein to basement membrane heparan sulfate proteoglycans. J Biol Chem. 1985 Jul 5;260(13):8106–8113. [PubMed] [Google Scholar]
- Mason R. M., Kimura J. H., Hascall V. C. Biosynthesis of hyaluronic acid in cultures of chondrocytes from the Swarm rat chondrosarcoma. J Biol Chem. 1982 Mar 10;257(5):2236–2245. [PubMed] [Google Scholar]
- Minor R. R. Cytotoxic effects of low levels of 3H-, 14C-, and 35S-labeled amino acids. J Biol Chem. 1982 Sep 10;257(17):10400–10413. [PubMed] [Google Scholar]
- Moss J., Shore I., Woodrow D., Gresser I. Interferon-induced glomerular basement membrane and endothelial cell lesions in mice. An immunogold ultrastructural study of basement membrane components. Am J Pathol. 1988 Dec;133(3):557–563. [PMC free article] [PubMed] [Google Scholar]
- Oegema T. R., Jr, Carpenter B. J., Thompson R. C., Jr Fluorometric determination of DNA in cartilage of various species. J Orthop Res. 1984;1(4):345–351. doi: 10.1002/jor.1100010402. [DOI] [PubMed] [Google Scholar]
- Olafson R. W., Sim R. G. An electrochemical approach to quantitation and characterization of metallothioneins. Anal Biochem. 1979 Dec;100(2):343–351. doi: 10.1016/0003-2697(79)90239-2. [DOI] [PubMed] [Google Scholar]
- Purtell J. N., Pesce A. J., Clyne D. H., Miller W. C., Pollak V. E. Isoelectric point of albumin: effect on renal handling of albumin. Kidney Int. 1979 Sep;16(3):366–376. doi: 10.1038/ki.1979.139. [DOI] [PubMed] [Google Scholar]
- Ryan G. B., Karnovsky M. J. An ultrastructural study of the mechanisms of proteinuria in aminonucleoside nephrosis. Kidney Int. 1975 Oct;8(4):219–232. doi: 10.1038/ki.1975.105. [DOI] [PubMed] [Google Scholar]
- Shively J. E., Conrad H. E. Formation of anhydrosugars in the chemical depolymerization of heparin. Biochemistry. 1976 Sep 7;15(18):3932–3942. doi: 10.1021/bi00663a005. [DOI] [PubMed] [Google Scholar]
- Spiro M. J. Sulfate metabolism in the alloxan-diabetic rat: relationship of altered sulfate pools to proteoglycan sulfation in heart and other tissues. Diabetologia. 1987 Apr;30(4):259–267. doi: 10.1007/BF00270425. [DOI] [PubMed] [Google Scholar]
- Thomas G. J., Jenner L., Mason R. M., Davies M. Human glomerular epithelial cell proteoglycans. Arch Biochem Biophys. 1990 Apr;278(1):11–20. doi: 10.1016/0003-9861(90)90224-m. [DOI] [PubMed] [Google Scholar]
- Thomas G. J., Mason R. M., Davies M. Characterization of proteoglycans synthesized by human adult glomerular mesangial cells in culture. Biochem J. 1991 Jul 1;277(Pt 1):81–88. doi: 10.1042/bj2770081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watts G. F., Bennett J. E., Rowe D. J., Morris R. W., Gatling W., Shaw K. M., Polak A. Assessment of immunochemical methods for determining low concentrations of albumin in urine. Clin Chem. 1986 Aug;32(8):1544–1548. [PubMed] [Google Scholar]
- Yamagata T., Saito H., Habuchi O., Suzuki S. Purification and properties of bacterial chondroitinases and chondrosulfatases. J Biol Chem. 1968 Apr 10;243(7):1523–1535. [PubMed] [Google Scholar]
- Yanagishita M., Hascall V. C. Cell surface heparan sulfate proteoglycans. J Biol Chem. 1992 May 15;267(14):9451–9454. [PubMed] [Google Scholar]