Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Nov 15;320(Pt 1):321–328. doi: 10.1042/bj3200321

Regulation of gamma-glutamylcysteine synthetase by protein phosphorylation.

W M Sun 1, Z Z Huang 1, S C Lu 1
PMCID: PMC1217934  PMID: 8947504

Abstract

We previously reported that the activity of gamma-glutamylcysteine synthetase (GCS; EC 6.3.2.2), the rate-limiting enzyme in GSH synthesis, can be acutely inhibited approximately 20-40% by agonists of various signal transduction pathways in rat hepatocytes [Lu, Kuhlenkamp, Garcia-Ruiz and Kaplowitz (1991) J. Clin. Invest. 88, 260-269]. We have now examined the possibility that GCS is phosphorylated directly by activation of protein kinase A (PKA), protein kinase C (PKC) and Ca2+/calmodulin-dependent kinase II (CMK). Phosphorylation of GCS was studied using both purified rat kidney GCS and cultured rat hepatocytes by immunoprecipitating the reaction product with specific rabbit anti-(rat GCS heavy subunit) (anti-GCS-HS) antibodies. All three kinases, PKA, PKC and CMK, phosphorylated rat kidney GCS-HS in a Mg(2+)-concentration-dependent manner, with the highest degree of phosphorylation occurring at 20 mM Mg2+. The maximum incorporation of phosphate in mol/mol of GCS was 1.17 for PKA, 0.70 for PKC and 0.62 for CMK. The degree of phosphorylation was correlated with the degree of loss of GCS activity, and no additional inhibition occurred when GCS was phosphorylated by all three kinases, suggesting that the kinases phosphorylated the same site(s). Phosphoamino analysis showed that all three kinases phosphorylated serine and threonine residues. Two-dimensional phosphopeptide mapping demonstrated that all three kinases phosphorylated the same five peptides, both PKA and PKC phosphorylated two other peptides, and only PKA phosphorylated one additional peptide. Phosphorylation of GCS decreased its Vmax for cysteine and glutamate without changing its K(m). Finally, treatment of cultured rat hepatocytes with dibutyryl cAMP and phenylephrine significantly increased the phosphorylation of GCS, suggesting a potentially important physiological role. In summary, we have demonstrated that GCS is phosphorylated and suggest that phosphorylation/dephosphorylation may regulate GCS activity.

Full Text

The Full Text of this article is available as a PDF (375.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aw T. Y., Ookhtens M., Kaplowitz N. Mechanism of inhibition of glutathione efflux by methionine from isolated rat hepatocytes. Am J Physiol. 1986 Sep;251(3 Pt 1):G354–G361. doi: 10.1152/ajpgi.1986.251.3.G354. [DOI] [PubMed] [Google Scholar]
  2. Bellomo G., Jewell S. A., Thor H., Orrenius S. Regulation of intracellular calcium compartmentation: studies with isolated hepatocytes and t-butyl hydroperoxide. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6842–6846. doi: 10.1073/pnas.79.22.6842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Cai J., Sun W. M., Lu S. C. Hormonal and cell density regulation of hepatic gamma-glutamylcysteine synthetase gene expression. Mol Pharmacol. 1995 Aug;48(2):212–218. [PubMed] [Google Scholar]
  5. Costa A. K., Schieble T. M., Heffel D. F., Trudell J. R. Toxicity of calcium ionophore A23187 in monolayers of hypoxic hepatocytes. Toxicol Appl Pharmacol. 1987 Jan;87(1):43–47. doi: 10.1016/0041-008x(87)90082-2. [DOI] [PubMed] [Google Scholar]
  6. Godwin A. K., Meister A., O'Dwyer P. J., Huang C. S., Hamilton T. C., Anderson M. E. High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3070–3074. doi: 10.1073/pnas.89.7.3070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Huang C. S., Anderson M. E., Meister A. Amino acid sequence and function of the light subunit of rat kidney gamma-glutamylcysteine synthetase. J Biol Chem. 1993 Sep 25;268(27):20578–20583. [PubMed] [Google Scholar]
  8. Huang C. S., Chang L. S., Anderson M. E., Meister A. Catalytic and regulatory properties of the heavy subunit of rat kidney gamma-glutamylcysteine synthetase. J Biol Chem. 1993 Sep 15;268(26):19675–19680. [PubMed] [Google Scholar]
  9. Kaplowitz N., Aw T. Y., Ookhtens M. The regulation of hepatic glutathione. Annu Rev Pharmacol Toxicol. 1985;25:715–744. doi: 10.1146/annurev.pa.25.040185.003435. [DOI] [PubMed] [Google Scholar]
  10. Kennelly P. J., Krebs E. G. Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J Biol Chem. 1991 Aug 25;266(24):15555–15558. [PubMed] [Google Scholar]
  11. Lauterburg B. H., Mitchell J. R. Toxic doses of acetaminophen suppress hepatic glutathione synthesis in rats. Hepatology. 1982 Jan-Feb;2(1):8–12. doi: 10.1002/hep.1840020103. [DOI] [PubMed] [Google Scholar]
  12. Lemasters J. J., DiGuiseppi J., Nieminen A. L., Herman B. Blebbing, free Ca2+ and mitochondrial membrane potential preceding cell death in hepatocytes. Nature. 1987 Jan 1;325(6099):78–81. doi: 10.1038/325078a0. [DOI] [PubMed] [Google Scholar]
  13. Long R. M., Moore L. Cytosolic calcium after carbon tetrachloride, 1,1-dichloroethylene, and phenylephrine exposure. Studies in rat hepatocytes with phosphorylase a and quin2. Biochem Pharmacol. 1987 Apr 15;36(8):1215–1221. doi: 10.1016/0006-2952(87)90073-6. [DOI] [PubMed] [Google Scholar]
  14. Lu S. C., Garcia-Ruiz C., Kuhlenkamp J., Ookhtens M., Salas-Prato M., Kaplowitz N. Hormonal regulation of glutathione efflux. J Biol Chem. 1990 Sep 25;265(27):16088–16095. [PubMed] [Google Scholar]
  15. Lu S. C., Ge J. L., Kuhlenkamp J., Kaplowitz N. Insulin and glucocorticoid dependence of hepatic gamma-glutamylcysteine synthetase and glutathione synthesis in the rat. Studies in cultured hepatocytes and in vivo. J Clin Invest. 1992 Aug;90(2):524–532. doi: 10.1172/JCI115890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lu S. C., Ge J. L. Loss of suppression of GSH synthesis at low cell density in primary cultures of rat hepatocytes. Am J Physiol. 1992 Dec;263(6 Pt 1):C1181–C1189. doi: 10.1152/ajpcell.1992.263.6.C1181. [DOI] [PubMed] [Google Scholar]
  17. Lu S. C., Kuhlenkamp J., Garcia-Ruiz C., Kaplowitz N. Hormone-mediated down-regulation of hepatic glutathione synthesis in the rat. J Clin Invest. 1991 Jul;88(1):260–269. doi: 10.1172/JCI115286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Menez J. F., Machu T. K., Song B. J., Browning M. D., Deitrich R. A. Phosphorylation of cytochrome P4502E1 (CYP2E1) by calmodulin dependent protein kinase, protein kinase C and cAMP dependent protein kinase. Alcohol Alcohol. 1993 Jul;28(4):445–451. [PubMed] [Google Scholar]
  19. Moldéus P., Högberg J., Orrenius S. Isolation and use of liver cells. Methods Enzymol. 1978;52:60–71. doi: 10.1016/s0076-6879(78)52006-5. [DOI] [PubMed] [Google Scholar]
  20. Mulcahy R. T., Bailey H. H., Gipp J. J. Up-regulation of gamma-glutamylcysteine synthetase activity in melphalan-resistant human multiple myeloma cells expressing increased glutathione levels. Cancer Chemother Pharmacol. 1994;34(1):67–71. doi: 10.1007/BF00686114. [DOI] [PubMed] [Google Scholar]
  21. Mulcahy R. T., Untawale S., Gipp J. J. Transcriptional up-regulation of gamma-glutamylcysteine synthetase gene expression in melphalan-resistant human prostate carcinoma cells. Mol Pharmacol. 1994 Nov;46(5):909–914. [PubMed] [Google Scholar]
  22. Raiford D. S., Sciuto A. M., Mitchell M. C. Effects of vasopressor hormones and modulators of protein kinase C on glutathione efflux from perfused rat liver. Am J Physiol. 1991 Oct;261(4 Pt 1):G578–G584. doi: 10.1152/ajpgi.1991.261.4.G578. [DOI] [PubMed] [Google Scholar]
  23. Richman P. G., Meister A. Regulation of gamma-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione. J Biol Chem. 1975 Feb 25;250(4):1422–1426. [PubMed] [Google Scholar]
  24. Rosorius O., Mieskes G., Issinger O. G., Körner C., Schmidt B., von Figura K., Braulke T. Characterization of phosphorylation sites in the cytoplasmic domain of the 300 kDa mannose-6-phosphate receptor. Biochem J. 1993 Jun 15;292(Pt 3):833–838. doi: 10.1042/bj2920833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Seelig G. F., Meister A. Cystamine-Sepharose. A probe for the active site of gamma-glutamylcysteine synthetase. J Biol Chem. 1982 May 10;257(9):5092–5096. [PubMed] [Google Scholar]
  26. Seelig G. F., Simondsen R. P., Meister A. Reversible dissociation of gamma-glutamylcysteine synthetase into two subunits. J Biol Chem. 1984 Aug 10;259(15):9345–9347. [PubMed] [Google Scholar]
  27. Sekura R., Meister A. gamma-Glutamylcysteine synthetase. Further purification, "half of the sites" reactivity, subunits, and specificity. J Biol Chem. 1977 Apr 25;252(8):2599–2605. [PubMed] [Google Scholar]
  28. Shi M. M., Kugelman A., Iwamoto T., Tian L., Forman H. J. Quinone-induced oxidative stress elevates glutathione and induces gamma-glutamylcysteine synthetase activity in rat lung epithelial L2 cells. J Biol Chem. 1994 Oct 21;269(42):26512–26517. [PubMed] [Google Scholar]
  29. Thor H., Hartzell P., Orrenius S. Potentiation of oxidative cell injury in hepatocytes which have accumulated Ca2+. J Biol Chem. 1984 May 25;259(10):6612–6615. [PubMed] [Google Scholar]
  30. Woods J. S., Davis H. A., Baer R. P. Enhancement of gamma-glutamylcysteine synthetase mRNA in rat kidney by methyl mercury. Arch Biochem Biophys. 1992 Jul;296(1):350–353. doi: 10.1016/0003-9861(92)90583-i. [DOI] [PubMed] [Google Scholar]
  31. Yan N., Meister A. Amino acid sequence of rat kidney gamma-glutamylcysteine synthetase. J Biol Chem. 1990 Jan 25;265(3):1588–1593. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES