Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Dec 1;320(Pt 2):345–357. doi: 10.1042/bj3200345

Mammalian mitochondrial beta-oxidation.

S Eaton 1, K Bartlett 1, M Pourfarzam 1
PMCID: PMC1217938  PMID: 8973539

Abstract

The enzymic stages of mammalian mitochondrial beta-oxidation were elucidated some 30-40 years ago. However, the discovery of a membrane-associated multifunctional enzyme of beta-oxidation, a membrane-associated acyl-CoA dehydrogenase and characterization of the carnitine palmitoyl transferase system at the protein and at the genetic level has demonstrated that the enzymes of the system itself are incompletely understood. Deficiencies of many of the enzymes have been recognized as important causes of disease. In addition, the study of these disorders has led to a greater understanding of the molecular mechanism of beta-oxidation and the import, processing and assembly of the beta-oxidation enzymes within the mitochondrion. The tissue-specific regulation, intramitochondrial control and supramolecular organization of the pathway is becoming better understood as sensitive analytical and molecular techniques are applied. This review aims to cover enzymological and organizational aspects of mitochondrial beta-oxidation together with the biochemical aspects of inherited disorders of beta-oxidation and the intrinsic control of beta-oxidation.

Full Text

The Full Text of this article is available as a PDF (425.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amendt B. A., Greene C., Sweetman L., Cloherty J., Shih V., Moon A., Teel L., Rhead W. J. Short-chain acyl-coenzyme A dehydrogenase deficiency. Clinical and biochemical studies in two patients. J Clin Invest. 1987 May;79(5):1303–1309. doi: 10.1172/JCI112953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amendt B. A., Moon A., Teel L., Rhead W. J. Long-chain acyl-coenzyme A dehydrogenase deficiency: biochemical studies in fibroblasts from three patients. Pediatr Res. 1988 Jun;23(6):603–605. doi: 10.1203/00006450-198806000-00015. [DOI] [PubMed] [Google Scholar]
  3. Angelini C., Freddo L., Battistella P., Bresolin N., Pierobon-Bormioli S., Armani M., Vergani L. Carnitine palmityl transferase deficiency: clinical variability, carrier detection, and autosomal-recessive inheritance. Neurology. 1981 Jul;31(7):883–886. doi: 10.1212/wnl.31.7.883. [DOI] [PubMed] [Google Scholar]
  4. Aoyama T., Ueno I., Kamijo T., Hashimoto T. Rat very-long-chain acyl-CoA dehydrogenase, a novel mitochondrial acyl-CoA dehydrogenase gene product, is a rate-limiting enzyme in long-chain fatty acid beta-oxidation system. cDNA and deduced amino acid sequence and distinct specificities of the cDNA-expressed protein. J Biol Chem. 1994 Jul 22;269(29):19088–19094. [PubMed] [Google Scholar]
  5. Awan M. M., Saggerson E. D. Malonyl-CoA metabolism in cardiac myocytes and its relevance to the control of fatty acid oxidation. Biochem J. 1993 Oct 1;295(Pt 1):61–66. doi: 10.1042/bj2950061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bakker A., Biermans W., Van Belle H., De Bie M., Bernaert I., Jacob W. Ultrastructural localisation of carnitine acetyltransferase activity in mitochondria of rat myocardium. Biochim Biophys Acta. 1994 Mar 29;1185(1):97–102. doi: 10.1016/0005-2728(94)90199-6. [DOI] [PubMed] [Google Scholar]
  7. Bartlett K. Methods for the investigation of hypoglycaemia with particular reference to inherited disorders of mitochondrial beta-oxidation. Baillieres Clin Endocrinol Metab. 1993 Jul;7(3):643–667. doi: 10.1016/s0950-351x(05)80212-5. [DOI] [PubMed] [Google Scholar]
  8. Beckmann J. D., Frerman F. E. Electron-transfer flavoprotein-ubiquinone oxidoreductase from pig liver: purification and molecular, redox, and catalytic properties. Biochemistry. 1985 Jul 16;24(15):3913–3921. doi: 10.1021/bi00336a016. [DOI] [PubMed] [Google Scholar]
  9. Beckmann J. D., Frerman F. E., McKean M. C. Inhibition of general acyl CoA dehydrogenase by electron transfer flavoprotein semiquinone. Biochem Biophys Res Commun. 1981 Oct 30;102(4):1290–1294. doi: 10.1016/s0006-291x(81)80151-9. [DOI] [PubMed] [Google Scholar]
  10. Bergman E. N., Reid R. S., Murray M. G., Brockway J. M., Whitelaw F. G. Interconversions and production of volatile fatty acids in the sheep rumen. Biochem J. 1965 Oct;97(1):53–58. doi: 10.1042/bj0970053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bhala A., Willi S. M., Rinaldo P., Bennett M. J., Schmidt-Sommerfeld E., Hale D. E. Clinical and biochemical characterization of short-chain acyl-coenzyme A dehydrogenase deficiency. J Pediatr. 1995 Jun;126(6):910–915. doi: 10.1016/s0022-3476(95)70207-5. [DOI] [PubMed] [Google Scholar]
  12. Bhuiyan A. K., Jackson S., Turnbull D. M., Aynsley-Green A., Leonard J. V., Bartlett K. The measurement of carnitine and acyl-carnitines: application to the investigation of patients with suspected inherited disorders of mitochondrial fatty acid oxidation. Clin Chim Acta. 1992 May 15;207(3):185–204. doi: 10.1016/0009-8981(92)90118-a. [DOI] [PubMed] [Google Scholar]
  13. Bhuiyan A. K., Watmough N. J., Turnbull D. M., Aynsley-Green A., Leonard J. V., Bartlett K. A new simple screening method for the diagnosis of medium chain acyl-CoA dehydrogenase deficiency. Clin Chim Acta. 1987 May 29;165(1):39–44. doi: 10.1016/0009-8981(87)90216-6. [DOI] [PubMed] [Google Scholar]
  14. Bianchi A., Evans J. L., Iverson A. J., Nordlund A. C., Watts T. D., Witters L. A. Identification of an isozymic form of acetyl-CoA carboxylase. J Biol Chem. 1990 Jan 25;265(3):1502–1509. [PubMed] [Google Scholar]
  15. Bielefeld D. R., Vary T. C., Neely J. R. Inhibition of carnitine palmitoyl-CoA transferase activity and fatty acid oxidation by lactate and oxfenicine in cardiac muscle. J Mol Cell Cardiol. 1985 Jun;17(6):619–625. doi: 10.1016/s0022-2828(85)80030-4. [DOI] [PubMed] [Google Scholar]
  16. Bird M. I., Saggerson E. D. Binding of malonyl-CoA to isolated mitochondria. Evidence for high- and low-affinity sites in liver and heart and relationship to inhibition of carnitine palmitoyltransferase activity. Biochem J. 1984 Sep 15;222(3):639–647. doi: 10.1042/bj2220639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Blakemore A. I., Singleton H., Pollitt R. J., Engel P. C., Kolvraa S., Gregersen N., Curtis D. Frequency of the G985 MCAD mutation in the general population. Lancet. 1991 Feb 2;337(8736):298–299. doi: 10.1016/0140-6736(91)90907-7. [DOI] [PubMed] [Google Scholar]
  18. Bougnères P. F., Saudubray J. M., Marsac C., Bernard O., Odièvre M., Girard J. Fasting hypoglycemia resulting from hepatic carnitine palmitoyl transferase deficiency. J Pediatr. 1981 May;98(5):742–746. doi: 10.1016/s0022-3476(81)80834-7. [DOI] [PubMed] [Google Scholar]
  19. Bradshaw R. A., Noyes B. E. L-3-hydroxyacyl coenzyme A dehydrogenase from pig heart muscle. EC 1.1.1.35 L-3-hydroxyacyl-CoA: NAD oxidoreductase. Methods Enzymol. 1975;35:122–128. doi: 10.1016/0076-6879(75)35147-1. [DOI] [PubMed] [Google Scholar]
  20. Brady L. J., Silverstein L. J., Hoppel C. L., Brady P. S. Hepatic mitochondrial inner membrane properties and carnitine palmitoyltransferase A and B. Effect of diabetes and starvation. Biochem J. 1985 Dec 1;232(2):445–450. doi: 10.1042/bj2320445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Bremer J. Carnitine--metabolism and functions. Physiol Rev. 1983 Oct;63(4):1420–1480. doi: 10.1152/physrev.1983.63.4.1420. [DOI] [PubMed] [Google Scholar]
  22. Bremer J., Wojtczak A. B. Factors controlling the rate of fatty acid -oxidation in rat liver mitochondria. Biochim Biophys Acta. 1972 Dec 8;280(4):515–530. doi: 10.1016/0005-2760(72)90131-2. [DOI] [PubMed] [Google Scholar]
  23. Brivet M., Slama A., Ogier H., Boutron A., Demaugre F., Saudubray J. M., Lemonnier A. Diagnosis of carnitine acylcarnitine translocase deficiency by complementation analysis. J Inherit Metab Dis. 1994;17(3):271–274. doi: 10.1007/BF00711805. [DOI] [PubMed] [Google Scholar]
  24. Bross P., Jespersen C., Jensen T. G., Andresen B. S., Kristensen M. J., Winter V., Nandy A., Kräutle F., Ghisla S., Bolundi L. Effects of two mutations detected in medium chain acyl-CoA dehydrogenase (MCAD)-deficient patients on folding, oligomer assembly, and stability of MCAD enzyme. J Biol Chem. 1995 Apr 28;270(17):10284–10290. doi: 10.1074/jbc.270.17.10284. [DOI] [PubMed] [Google Scholar]
  25. Brown N. F., Esser V., Foster D. W., McGarry J. D. Expression of a cDNA for rat liver carnitine palmitoyltransferase I in yeast establishes that catalytic activity and malonyl-CoA sensitivity reside in a single polypeptide. J Biol Chem. 1994 Oct 21;269(42):26438–26442. [PubMed] [Google Scholar]
  26. Brown N. F., Weis B. C., Husti J. E., Foster D. W., McGarry J. D. Mitochondrial carnitine palmitoyltransferase I isoform switching in the developing rat heart. J Biol Chem. 1995 Apr 14;270(15):8952–8957. doi: 10.1074/jbc.270.15.8952. [DOI] [PubMed] [Google Scholar]
  27. CRANE F. L., BEINERT H. On the mechanism of dehydrogenation of fatty acyl derivatives of coenzyme A. II. The electron-transferring flavoprotein. J Biol Chem. 1956 Feb;218(2):717–731. [PubMed] [Google Scholar]
  28. Carpenter K., Pollitt R. J., Middleton B. Human liver long-chain 3-hydroxyacyl-coenzyme A dehydrogenase is a multifunctional membrane-bound beta-oxidation enzyme of mitochondria. Biochem Biophys Res Commun. 1992 Mar 16;183(2):443–448. doi: 10.1016/0006-291x(92)90501-b. [DOI] [PubMed] [Google Scholar]
  29. Chen L. S., Jin S. J., Tserng K. Y. Purification and mechanism of delta 3,delta 5-t-2,t-4-dienoyl-CoA isomerase from rat liver. Biochemistry. 1994 Aug 30;33(34):10527–10534. doi: 10.1021/bi00200a039. [DOI] [PubMed] [Google Scholar]
  30. Christensen E., Kølvraa S., Gregersen N. Glutaric aciduria type II: evidence for a defect related to the electron transfer flavoprotein or its dehydrogenase. Pediatr Res. 1984 Jul;18(7):663–667. doi: 10.1203/00006450-198407000-00020. [DOI] [PubMed] [Google Scholar]
  31. Clarke P. R., Bieber L. L. Isolation and purification of mitochondrial carnitine octanoyltransferase activities from beef heart. J Biol Chem. 1981 Oct 10;256(19):9861–9868. [PubMed] [Google Scholar]
  32. Coates P. M., Hale D. E., Finocchiaro G., Tanaka K., Winter S. C. Genetic deficiency of short-chain acyl-coenzyme A dehydrogenase in cultured fibroblasts from a patient with muscle carnitine deficiency and severe skeletal muscle weakness. J Clin Invest. 1988 Jan;81(1):171–175. doi: 10.1172/JCI113290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Cook G. A., Otto D. A., Cornell N. W. Differential inhibition of ketogenesis by malonyl-CoA in mitochondria from fed and starved rats. Biochem J. 1980 Dec 15;192(3):955–958. doi: 10.1042/bj1920955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Cook G. A., Stephens T. W., Harris R. A. Altered sensitivity of carnitine palmitoyltransferase to inhibition by malonyl-CoA in ketotic diabetic rats. Biochem J. 1984 Apr 1;219(1):337–339. doi: 10.1042/bj2190337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Cornish-Bowden A., Cárdenas M. L. Channelling can affect concentrations of metabolic intermediates at constant net flux: artefact or reality? Eur J Biochem. 1993 Apr 1;213(1):87–92. doi: 10.1111/j.1432-1033.1993.tb17737.x. [DOI] [PubMed] [Google Scholar]
  36. DRYSDALE G. R., LARDY H. A. Fatty acid oxidation by a soluble enzyme system from mitochondria. J Biol Chem. 1953 May;202(1):119–136. [PubMed] [Google Scholar]
  37. Davidson B., Schulz H. Separation, properties, and regulation of acyl coenzyme A dehydrogenases from bovine heat and liver. Arch Biochem Biophys. 1982 Jan;213(1):155–162. doi: 10.1016/0003-9861(82)90450-7. [DOI] [PubMed] [Google Scholar]
  38. Demaugre F., Bonnefont J. P., Cepanec C., Scholte J., Saudubray J. M., Leroux J. P. Immunoquantitative analysis of human carnitine palmitoyltransferase I and II defects. Pediatr Res. 1990 May;27(5):497–500. doi: 10.1203/00006450-199005000-00016. [DOI] [PubMed] [Google Scholar]
  39. Demaugre F., Bonnefont J. P., Colonna M., Cepanec C., Leroux J. P., Saudubray J. M. Infantile form of carnitine palmitoyltransferase II deficiency with hepatomuscular symptoms and sudden death. Physiopathological approach to carnitine palmitoyltransferase II deficiencies. J Clin Invest. 1991 Mar;87(3):859–864. doi: 10.1172/JCI115090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. DiDonato S., Gellera C., Peluchetti D., Uziel G., Antonelli A., Lus G., Rimoldi M. Normalization of short-chain acylcoenzyme A dehydrogenase after riboflavin treatment in a girl with multiple acylcoenzyme A dehydrogenase-deficient myopathy. Ann Neurol. 1989 May;25(5):479–484. doi: 10.1002/ana.410250510. [DOI] [PubMed] [Google Scholar]
  41. Ding J. H., Yang B. Z., Bao Y., Roe C. R., Chen Y. T. Identification of a new mutation in medium-chain acyl-CoA dehydrogenase (MCAD) deficiency. Am J Hum Genet. 1992 Jan;50(1):229–233. [PMC free article] [PubMed] [Google Scholar]
  42. Dommes V., Kunau W. H. Purification and properties of acyl coenzyme A dehydrogenases from bovine liver. Formation of 2-trans,4-cis-decadienoyl coenzyme A. J Biol Chem. 1984 Feb 10;259(3):1789–1797. [PubMed] [Google Scholar]
  43. Drynan L., Quant P. A., Zammit V. A. Flux control exerted by mitochondrial outer membrane carnitine palmitoyltransferase over beta-oxidation, ketogenesis and tricarboxylic acid cycle activity in hepatocytes isolated from rats in different metabolic states. Biochem J. 1996 Aug 1;317(Pt 3):791–795. doi: 10.1042/bj3170791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Dugan R. E., Osterlund B. R., Drong R. F., Swenson T. L. A malonyl-CoA-binding protein from liver. Biochem Biophys Res Commun. 1987 Aug 31;147(1):234–241. doi: 10.1016/s0006-291x(87)80111-0. [DOI] [PubMed] [Google Scholar]
  45. Duran M., Bruinvis L., Ketting D., de Klerk J. B., Wadman S. K. Cis-4-decenoic acid in plasma: a characteristic metabolite in medium-chain acyl-CoA dehydrogenase deficiency. Clin Chem. 1988 Mar;34(3):548–551. [PubMed] [Google Scholar]
  46. Duran M., Wanders R. J., de Jager J. P., Dorland L., Bruinvis L., Ketting D., Ijlst L., van Sprang F. J. 3-Hydroxydicarboxylic aciduria due to long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency associated with sudden neonatal death: protective effect of medium-chain triglyceride treatment. Eur J Pediatr. 1991 Jan;150(3):190–195. doi: 10.1007/BF01963564. [DOI] [PubMed] [Google Scholar]
  47. Dusheiko G., Kew M. C., Joffe B. I., Lewin J. R., Mantagos S., Tanaka K. Recurrent hypoglycemia associated with glutaric aciduria type II in an adult. N Engl J Med. 1979 Dec 27;301(26):1405–1409. doi: 10.1056/NEJM197912273012601. [DOI] [PubMed] [Google Scholar]
  48. Eaton S., Bhuiyan A. K., Kler R. S., Turnbull D. M., Bartlett K. Intramitochondrial control of the oxidation of hexadecanoate in skeletal muscle. A study of the acyl-CoA esters which accumulate during rat skeletal-muscle mitochondrial beta-oxidation of [U-14C]hexadecanoate and [U-14C]hexadecanoyl-carnitine. Biochem J. 1993 Jan 1;289(Pt 1):161–168. doi: 10.1042/bj2890161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Eaton S., Turnbull D. M., Bartlett K. Redox control of beta-oxidation in rat liver mitochondria. Eur J Biochem. 1994 Mar 15;220(3):671–681. doi: 10.1111/j.1432-1033.1994.tb18668.x. [DOI] [PubMed] [Google Scholar]
  50. Edwards Y. H., Chase J. F., Edwards M. R., Tubbs P. K. Carnitine acetyltransferase: the question of multiple forms. Eur J Biochem. 1974 Jul 1;46(1):209–215. doi: 10.1111/j.1432-1033.1974.tb03613.x. [DOI] [PubMed] [Google Scholar]
  51. El-Fakhri M., Middleton B. The existence of an inner-membrane-bound, long acyl-chain-specific 3-hydroxyacyl-CoA dehydrogenase in mammalian mitochondria. Biochim Biophys Acta. 1982 Nov 12;713(2):270–279. doi: 10.1016/0005-2760(82)90244-2. [DOI] [PubMed] [Google Scholar]
  52. England P. J., Robinson B. H. The permeability of rat heart mitochondria to citrate. Biochem J. 1969 Mar;112(1):8P–8P. doi: 10.1042/bj1120008p. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Esser V., Brown N. F., Cowan A. T., Foster D. W., McGarry J. D. Expression of a cDNA isolated from rat brown adipose tissue and heart identifies the product as the muscle isoform of carnitine palmitoyltransferase I (M-CPT I). M-CPT I is the predominant CPT I isoform expressed in both white (epididymal) and brown adipocytes. J Biol Chem. 1996 Mar 22;271(12):6972–6977. doi: 10.1074/jbc.271.12.6972. [DOI] [PubMed] [Google Scholar]
  54. Farnsworth L., Shepherd I. M., Johnson M. A., Bindoff L. A., Turnbull D. M. Absence of immunoreactive enzyme protein in short-chain acylcoenzyme A dehydrogenase deficiency. Ann Neurol. 1990 Nov;28(5):717–720. doi: 10.1002/ana.410280520. [DOI] [PubMed] [Google Scholar]
  55. Felig P., Wahren J. Fuel homeostasis in exercise. N Engl J Med. 1975 Nov 20;293(21):1078–1084. doi: 10.1056/NEJM197511202932107. [DOI] [PubMed] [Google Scholar]
  56. Finocchiaro G., Ito M., Tanaka K. Purification and properties of short chain acyl-CoA, medium chain acyl-CoA, and isovaleryl-CoA dehydrogenases from human liver. J Biol Chem. 1987 Jun 15;262(17):7982–7989. [PubMed] [Google Scholar]
  57. Fong J. C., Schulz H. Purification and properties of pig heart crotonase and the presence of short chain and long chain enoyl coenzyme A hydratases in pig and guinea pig tissues. J Biol Chem. 1977 Jan 25;252(2):542–547. [PubMed] [Google Scholar]
  58. Frerman F. E., Goodman S. I. Deficiency of electron transfer flavoprotein or electron transfer flavoprotein:ubiquinone oxidoreductase in glutaric acidemia type II fibroblasts. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4517–4520. doi: 10.1073/pnas.82.13.4517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Frerman F. E. Reaction of electron-transfer flavoprotein ubiquinone oxidoreductase with the mitochondrial respiratory chain. Biochim Biophys Acta. 1987 Sep 10;893(2):161–169. doi: 10.1016/0005-2728(87)90035-1. [DOI] [PubMed] [Google Scholar]
  60. Fukushima T., Decker R. V., Anderson W. M., Spivey H. O. Substrate channeling of NADH and binding of dehydrogenases to complex I. J Biol Chem. 1989 Oct 5;264(28):16483–16488. [PubMed] [Google Scholar]
  61. Furuta S., Hashimoto T. Purification and properties of 3-hydroxyacyl coenzyme A dehydrogenase-binding protein from rat liver mitochondria. J Biochem. 1995 Oct;118(4):810–818. doi: 10.1093/oxfordjournals.jbchem.a124984. [DOI] [PubMed] [Google Scholar]
  62. Furuta S., Miyazawa S., Hashimoto T. Purification and properties of rat liver acyl-CoA dehydrogenases and electron transfer flavoprotein. J Biochem. 1981 Dec;90(6):1739–1750. doi: 10.1093/oxfordjournals.jbchem.a133651. [DOI] [PubMed] [Google Scholar]
  63. Furuta S., Miyazawa S., Hashimoto T. Purification and properties of rat liver acyl-CoA dehydrogenases and electron transfer flavoprotein. J Biochem. 1981 Dec;90(6):1739–1750. doi: 10.1093/oxfordjournals.jbchem.a133651. [DOI] [PubMed] [Google Scholar]
  64. Garland P. B., Shepherd D., Yates D. W. Steady-state concentrations of coenzyme A, acetyl-coenzyme A and long-chain fatty acyl-coenzyme A in rat-liver mitochondria oxidizing palmitate. Biochem J. 1965 Nov;97(2):587–594. doi: 10.1042/bj0970587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Gavino G. R., Gavino V. C. Rat liver outer mitochondrial carnitine palmitoyltransferase activity towards long-chain polyunsaturated fatty acids and their CoA esters. Lipids. 1991 Apr;26(4):266–270. doi: 10.1007/BF02537135. [DOI] [PubMed] [Google Scholar]
  66. Gehring U., Riepertinger C. Dissoziation und Rekonstitution der Thiolase. Eur J Biochem. 1968 Nov;6(2):281–292. doi: 10.1111/j.1432-1033.1968.tb00447.x. [DOI] [PubMed] [Google Scholar]
  67. Ghadiminejad I., Saggerson E. D. The relationship of rat liver overt carnitine palmitoyltransferase to the mitochondrial malonyl-CoA binding entity and to the latent palmitoyltransferase. Biochem J. 1990 Sep 15;270(3):787–794. doi: 10.1042/bj2700787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Grantham B. D., Zammit V. A. Restoration of the properties of carnitine palmitoyltransferase I in liver mitochondria during re-feeding of starved rats. Biochem J. 1986 Oct 15;239(2):485–488. doi: 10.1042/bj2390485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Grantham B. D., Zammit V. A. Role of carnitine palmitoyltransferase I in the regulation of hepatic ketogenesis during the onset and reversal of chronic diabetes. Biochem J. 1988 Jan 15;249(2):409–414. doi: 10.1042/bj2490409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Gregersen N., Andresen B. S., Bross P., Winter V., Rüdiger N., Engst S., Christensen E., Kelly D., Strauss A. W., Kølvraa S. Molecular characterization of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency: identification of a lys329 to glu mutation in the MCAD gene, and expression of inactive mutant enzyme protein in E. coli. Hum Genet. 1991 Apr;86(6):545–551. doi: 10.1007/BF00201539. [DOI] [PubMed] [Google Scholar]
  71. Guzman M., Kolodziej M. P., Caldwell A., Corstorphine C. G., Zammit V. A. Evidence against direct involvement of phosphorylation in the activation of carnitine palmitoyltransferase by okadaic acid in rat hepatocytes. Biochem J. 1994 Jun 15;300(Pt 3):693–699. doi: 10.1042/bj3000693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Guzmán M., Castro J. Okadaic acid stimulates carnitine palmitoyltransferase I activity and palmitate oxidation in isolated rat hepatocytes. FEBS Lett. 1991 Oct 7;291(1):105–108. doi: 10.1016/0014-5793(91)81114-n. [DOI] [PubMed] [Google Scholar]
  73. Guzmán M., Geelen M. J. Activity of carnitine palmitoyltransferase in mitochondrial outer membranes and peroxisomes in digitonin-permeabilized hepatocytes. Selective modulation of mitochondrial enzyme activity by okadaic acid. Biochem J. 1992 Oct 15;287(Pt 2):487–492. doi: 10.1042/bj2870487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Guzmán M., Geelen M. J. Regulation of fatty acid oxidation in mammalian liver. Biochim Biophys Acta. 1993 Apr 23;1167(3):227–241. doi: 10.1016/0005-2760(93)90224-w. [DOI] [PubMed] [Google Scholar]
  75. Guzmán M., Velasco G., Castro J., Zammit V. A. Inhibition of carnitine palmitoyltransferase I by hepatocyte swelling. FEBS Lett. 1994 May 16;344(2-3):239–241. doi: 10.1016/0014-5793(94)00405-6. [DOI] [PubMed] [Google Scholar]
  76. Hale D. E., Batshaw M. L., Coates P. M., Frerman F. E., Goodman S. I., Singh I., Stanley C. A. Long-chain acyl coenzyme A dehydrogenase deficiency: an inherited cause of nonketotic hypoglycemia. Pediatr Res. 1985 Jul;19(7):666–671. doi: 10.1203/00006450-198507000-00006. [DOI] [PubMed] [Google Scholar]
  77. Hale D. E., Bennett M. J. Fatty acid oxidation disorders: a new class of metabolic diseases. J Pediatr. 1992 Jul;121(1):1–11. doi: 10.1016/s0022-3476(05)82532-6. [DOI] [PubMed] [Google Scholar]
  78. Hale D. E., Stanley C. A., Coates P. M. The long-chain acyl-CoA dehydrogenase deficiency. Prog Clin Biol Res. 1990;321:303–311. [PubMed] [Google Scholar]
  79. Halestrap A. P., Dunlop J. L. Intramitochondrial regulation of fatty acid beta-oxidation occurs between flavoprotein and ubiquinone. A role for changes in the matrix volume. Biochem J. 1986 Nov 1;239(3):559–565. doi: 10.1042/bj2390559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Halestrap A. P. The regulation of the oxidation of fatty acids and other substrates in rat heart mitochondria by changes in the matrix volume induced by osmotic strength, valinomycin and Ca2+. Biochem J. 1987 May 15;244(1):159–164. doi: 10.1042/bj2440159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Harano Y., Kashiwagi A., Kojima H., Suzuki M., Hashimoto T., Shigeta Y. Phosphorylation of carnitine palmitoyltransferase and activation by glucagon in isolated rat hepatocytes. FEBS Lett. 1985 Sep 2;188(2):267–272. doi: 10.1016/0014-5793(85)80385-9. [DOI] [PubMed] [Google Scholar]
  82. Hardie D. G. Regulation of fatty acid and cholesterol metabolism by the AMP-activated protein kinase. Biochim Biophys Acta. 1992 Feb 12;1123(3):231–238. doi: 10.1016/0005-2760(92)90001-c. [DOI] [PubMed] [Google Scholar]
  83. Hass G. M., Hill R. L. The subunit structure of crotonase. J Biol Chem. 1969 Nov 25;244(22):6080–6086. [PubMed] [Google Scholar]
  84. He X. Y., Yang S. Y., Schulz H. Assay of L-3-hydroxyacyl-coenzyme A dehydrogenase with substrates of different chain lengths. Anal Biochem. 1989 Jul;180(1):105–109. doi: 10.1016/0003-2697(89)90095-x. [DOI] [PubMed] [Google Scholar]
  85. He X. Y., Yang S. Y., Schulz H. Inhibition of enoyl-CoA hydratase by long-chain L-3-hydroxyacyl-CoA and its possible effect on fatty acid oxidation. Arch Biochem Biophys. 1992 Nov 1;298(2):527–531. doi: 10.1016/0003-9861(92)90445-3. [DOI] [PubMed] [Google Scholar]
  86. Hesler C. B., Olymbios C., Haldar D. Transverse-plane topography of long-chain acyl-CoA synthetase in the mitochondrial outer membrane. J Biol Chem. 1990 Apr 25;265(12):6600–6605. [PubMed] [Google Scholar]
  87. Hinsdale M. E., Hamm D. A., Wood P. A. Effects of short-chain acyl-CoA dehydrogenase deficiency on development expression of metabolic enzyme genes in the mouse. Biochem Mol Med. 1996 Apr;57(2):106–115. doi: 10.1006/bmme.1996.0016. [DOI] [PubMed] [Google Scholar]
  88. Hülsmann W. C. Enzymen en homeostase. Folia Med Neerl. 1966 Sep;9(4):137–144. [PubMed] [Google Scholar]
  89. IJlst L., Ruiter J. P., Hoovers J. M., Jakobs M. E., Wanders R. J. Common missense mutation G1528C in long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Characterization and expression of the mutant protein, mutation analysis on genomic DNA and chromosomal localization of the mitochondrial trifunctional protein alpha subunit gene. J Clin Invest. 1996 Aug 15;98(4):1028–1033. doi: 10.1172/JCI118863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. IJlst L., Wanders R. J., Ushikubo S., Kamijo T., Hashimoto T. Molecular basis of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: identification of the major disease-causing mutation in the alpha-subunit of the mitochondrial trifunctional protein. Biochim Biophys Acta. 1994 Dec 8;1215(3):347–350. doi: 10.1016/0005-2760(94)90064-7. [DOI] [PubMed] [Google Scholar]
  91. Ikeda Y., Dabrowski C., Tanaka K. Separation and properties of five distinct acyl-CoA dehydrogenases from rat liver mitochondria. Identification of a new 2-methyl branched chain acyl-CoA dehydrogenase. J Biol Chem. 1983 Jan 25;258(2):1066–1076. [PubMed] [Google Scholar]
  92. Ikeda Y., Keese S. M., Tanaka K. Biosynthesis of electron transfer flavoprotein in a cell-free system and in cultured human fibroblasts. Defect in the alpha subunit synthesis is a primary lesion in glutaric aciduria type II. J Clin Invest. 1986 Oct;78(4):997–1002. doi: 10.1172/JCI112691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Indiveri C., Tonazzi A., Palmieri F. Characterization of the unidirectional transport of carnitine catalyzed by the reconstituted carnitine carrier from rat liver mitochondria. Biochim Biophys Acta. 1991 Oct 14;1069(1):110–116. doi: 10.1016/0005-2736(91)90110-t. [DOI] [PubMed] [Google Scholar]
  94. Indiveri C., Tonazzi A., Palmieri F. Identification and purification of the carnitine carrier from rat liver mitochondria. Biochim Biophys Acta. 1990 Oct 24;1020(1):81–86. doi: 10.1016/0005-2728(90)90096-m. [DOI] [PubMed] [Google Scholar]
  95. Indo Y., Coates P. M., Hale D. E., Tanaka K. Immunochemical characterization of variant long-chain acyl-CoA dehydrogenase in cultured fibroblasts from nine patients with long-chain acyl-CoA dehydrogenase deficiency. Pediatr Res. 1991 Sep;30(3):211–215. doi: 10.1203/00006450-199109000-00001. [DOI] [PubMed] [Google Scholar]
  96. Izai K., Uchida Y., Orii T., Yamamoto S., Hashimoto T. Novel fatty acid beta-oxidation enzymes in rat liver mitochondria. I. Purification and properties of very-long-chain acyl-coenzyme A dehydrogenase. J Biol Chem. 1992 Jan 15;267(2):1027–1033. [PubMed] [Google Scholar]
  97. Jackson S., Bartlett K., Land J., Moxon E. R., Pollitt R. J., Leonard J. V., Turnbull D. M. Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Pediatr Res. 1991 Apr;29(4 Pt 1):406–411. doi: 10.1203/00006450-199104000-00016. [DOI] [PubMed] [Google Scholar]
  98. Jackson S., Kler R. S., Bartlett K., Briggs H., Bindoff L. A., Pourfarzam M., Gardner-Medwin D., Turnbull D. M. Combined enzyme defect of mitochondrial fatty acid oxidation. J Clin Invest. 1992 Oct;90(4):1219–1225. doi: 10.1172/JCI115983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Jackson S., Schaefer J., Middleton B., Turnbull D. M. Characterisation of a novel enzyme of human fatty acid beta-oxidation: a matrix-associated, mitochondrial 2-enoyl-CoA hydratase. Biochem Biophys Res Commun. 1995 Sep 5;214(1):247–253. doi: 10.1006/bbrc.1995.2281. [DOI] [PubMed] [Google Scholar]
  100. Kelly D. P., Whelan A. J., Ogden M. L., Alpers R., Zhang Z. F., Bellus G., Gregersen N., Dorland L., Strauss A. W. Molecular characterization of inherited medium-chain acyl-CoA dehydrogenase deficiency. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9236–9240. doi: 10.1073/pnas.87.23.9236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Kerner J., Bieber L. Isolation of a malonyl-CoA-sensitive CPT/beta-oxidation enzyme complex from heart mitochondria. Biochemistry. 1990 May 8;29(18):4326–4334. doi: 10.1021/bi00470a010. [DOI] [PubMed] [Google Scholar]
  102. Killenberg P. G., Davidson E. D., Webster L. T., Jr Evidence for a medium-chain fatty acid: coenzyme A ligase (adenosine monophosphate) that activates salicylate. Mol Pharmacol. 1971 May;7(3):260–268. [PubMed] [Google Scholar]
  103. Kilponen J. M., Palosaari P. M., Hiltunen J. K. Occurrence of a long-chain delta 3,delta 2-enoyl-CoA isomerase in rat liver. Biochem J. 1990 Jul 1;269(1):223–226. doi: 10.1042/bj2690223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Kim J. J., Wu J. Structure of the medium-chain acyl-CoA dehydrogenase from pig liver mitochondria at 3-A resolution. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6677–6681. doi: 10.1073/pnas.85.18.6677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Kispal G., Sumegi B., Alkonyi I. Isolation and characterization of 3-hydroxyacyl coenzyme A dehydrogenase-binding protein from pig heart inner mitochondrial membrane. J Biol Chem. 1986 Oct 25;261(30):14209–14213. [PubMed] [Google Scholar]
  106. Kler R. S., Jackson S., Bartlett K., Bindoff L. A., Eaton S., Pourfarzam M., Frerman F. E., Goodman S. I., Watmough N. J., Turnbull D. M. Quantitation of acyl-CoA and acylcarnitine esters accumulated during abnormal mitochondrial fatty acid oxidation. J Biol Chem. 1991 Dec 5;266(34):22932–22938. [PubMed] [Google Scholar]
  107. Kolodziej M. P., Crilly P. J., Corstorphine C. G., Zammit V. A. Development and characterization of a polyclonal antibody against rat liver mitochondrial overt carnitine palmitoyltransferase (CPT I). Distinction of CPT I from CPT II and of isoforms of CPT I in different tissues. Biochem J. 1992 Mar 1;282(Pt 2):415–421. doi: 10.1042/bj2820415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Kolodziej M. P., Zammit V. A. Sensitivity of inhibition of rat liver mitochondrial outer-membrane carnitine palmitoyltransferase by malonyl-CoA to chemical- and temperature-induced changes in membrane fluidity. Biochem J. 1990 Dec 1;272(2):421–425. doi: 10.1042/bj2720421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Kudo N., Barr A. J., Barr R. L., Desai S., Lopaschuk G. D. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5'-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem. 1995 Jul 21;270(29):17513–17520. doi: 10.1074/jbc.270.29.17513. [DOI] [PubMed] [Google Scholar]
  110. Kudo N., Barr A. J., Barr R. L., Desai S., Lopaschuk G. D. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5'-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem. 1995 Jul 21;270(29):17513–17520. doi: 10.1074/jbc.270.29.17513. [DOI] [PubMed] [Google Scholar]
  111. Kunz W. S. Application of the theory of steady-state flux control to mitochondrial beta-oxidation. Biomed Biochim Acta. 1991;50(12):1143–1157. [PubMed] [Google Scholar]
  112. Kunz W. S. Evaluation of electron-transfer flavoprotein and alpha-lipoamide dehydrogenase redox states by two-channel fluorimetry and its application to the investigation of beta-oxidation. Biochim Biophys Acta. 1988 Jan 20;932(1):8–16. doi: 10.1016/0005-2728(88)90134-x. [DOI] [PubMed] [Google Scholar]
  113. Kølvraa S., Gregersen N., Blakemore A. I., Schneidermann A. K., Winter V., Andresen B. S., Curtis D., Engel P. C., Pricille D., Rhead W. The most common mutation causing medium-chain acyl-CoA dehydrogenase deficiency is strongly associated with a particular haplotype in the region of the gene. Hum Genet. 1991 Aug;87(4):425–428. doi: 10.1007/BF00197161. [DOI] [PubMed] [Google Scholar]
  114. Kølvraa S., Gregersen N., Christensen E., Hobolth N. In vitro fibroblast studies in a patient with C6-C10-dicarboxylic aciduria: evidence for a defect in general acyl-CoA dehydrogenase. Clin Chim Acta. 1982 Nov 24;126(1):53–67. doi: 10.1016/0009-8981(82)90361-8. [DOI] [PubMed] [Google Scholar]
  115. LIPMANN F. On chemistry and function of coenzyme A. Bacteriol Rev. 1953 Mar;17(1):1–16. doi: 10.1128/br.17.1.1-16.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. LYNEN F., OCHOA S. Enzymes of fatty acid metabolism. Biochim Biophys Acta. 1953 Sep-Oct;12(1-2):299–314. doi: 10.1016/0006-3002(53)90149-8. [DOI] [PubMed] [Google Scholar]
  117. Lehnert W., Wendel U., Lindenmaier S., Böhm N. Multiple acyl-CoA dehydrogenation deficiency (glutaric aciduria type II), congenital polycystic kidneys, and symmetric warty dysplasia of the cerebral cortex in two brothers. I. Clinical, metabolical, and biochemical findings. Eur J Pediatr. 1982 Sep;139(1):56–59. doi: 10.1007/BF00442081. [DOI] [PubMed] [Google Scholar]
  118. Loehr J. P., Goodman S. I., Frerman F. E. Glutaric acidemia type II: heterogeneity of clinical and biochemical phenotypes. Pediatr Res. 1990 Mar;27(3):311–315. doi: 10.1203/00006450-199003000-00024. [DOI] [PubMed] [Google Scholar]
  119. Lopaschuk G. D., Belke D. D., Gamble J., Itoi T., Schönekess B. O. Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim Biophys Acta. 1994 Aug 4;1213(3):263–276. doi: 10.1016/0005-2760(94)00082-4. [DOI] [PubMed] [Google Scholar]
  120. Lopaschuk G. D., Belke D. D., Gamble J., Itoi T., Schönekess B. O. Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim Biophys Acta. 1994 Aug 4;1213(3):263–276. doi: 10.1016/0005-2760(94)00082-4. [DOI] [PubMed] [Google Scholar]
  121. Lopes-Cardozo M., Klazinga W., van den Bergh S. G. Accumulation of carnitine esters of beta-oxidation intermediates during palmitate oxidation by rat-liver mitochondria. Eur J Biochem. 1978 Feb;83(2):629–634. doi: 10.1111/j.1432-1033.1978.tb12132.x. [DOI] [PubMed] [Google Scholar]
  122. Luo M. J., He X. Y., Sprecher H., Schulz H. Purification and characterization of the trifunctional beta-oxidation complex from pig heart mitochondria. Arch Biochem Biophys. 1993 Jul;304(1):266–271. doi: 10.1006/abbi.1993.1348. [DOI] [PubMed] [Google Scholar]
  123. Luo M. J., Smeland T. E., Shoukry K., Schulz H. Delta 3,5, delta 2,4-dienoyl-CoA isomerase from rat liver mitochondria. Purification and characterization of a new enzyme involved in the beta-oxidation of unsaturated fatty acids. J Biol Chem. 1994 Jan 28;269(4):2384–2388. [PubMed] [Google Scholar]
  124. MAHLER H. R., WAKIL S. J., BOCK R. M. Studies on fatty acid oxidation. I. Enzymatic activation of fatty acids. J Biol Chem. 1953 Sep;204(1):453–468. [PubMed] [Google Scholar]
  125. Matsubara Y., Narisawa K., Miyabayashi S., Tada K., Coates P. M. Molecular lesion in patients with medium-chain acyl-CoA dehydrogenase deficiency. Lancet. 1990 Jun 30;335(8705):1589–1589. doi: 10.1016/0140-6736(90)91413-5. [DOI] [PubMed] [Google Scholar]
  126. Matsubara Y., Narisawa K., Tada K., Ikeda H., Yao Y. Q., Danks D. M., Green A., McCabe E. R. Prevalence of K329E mutation in medium-chain acyl-CoA dehydrogenase gene determined from Guthrie cards. Lancet. 1991 Aug 31;338(8766):552–553. doi: 10.1016/0140-6736(91)91110-g. [DOI] [PubMed] [Google Scholar]
  127. McGarry J. D., Foster D. W. Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem. 1980;49:395–420. doi: 10.1146/annurev.bi.49.070180.002143. [DOI] [PubMed] [Google Scholar]
  128. McGarry J. D., Mills S. E., Long C. S., Foster D. W. Observations on the affinity for carnitine, and malonyl-CoA sensitivity, of carnitine palmitoyltransferase I in animal and human tissues. Demonstration of the presence of malonyl-CoA in non-hepatic tissues of the rat. Biochem J. 1983 Jul 15;214(1):21–28. doi: 10.1042/bj2140021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Melde K., Jackson S., Bartlett K., Sherratt H. S., Ghisla S. Metabolic consequences of methylenecyclopropylglycine poisoning in rats. Biochem J. 1991 Mar 1;274(Pt 2):395–400. doi: 10.1042/bj2740395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Mendes P., Kell D. B., Westerhoff H. V. Why and when channelling can decrease pool size at constant net flux in a simple dynamic channel. Biochim Biophys Acta. 1996 Mar 15;1289(2):175–186. doi: 10.1016/0304-4165(95)00152-2. [DOI] [PubMed] [Google Scholar]
  131. Middleton B., Bartlett K. The synthesis and characterisation of 2-methylacetoacetyl coenzyme A and its use in the identification of the site of the defect in 2-methylacetoacetic and 2-methyl-3-hydroxybutyric aciduria. Clin Chim Acta. 1983 Mar 14;128(2-3):291–305. doi: 10.1016/0009-8981(83)90329-7. [DOI] [PubMed] [Google Scholar]
  132. Middleton B. The existence of ketoacyl-CoA thiolases of differing properties and intracellular localization in ox liver. Biochem Biophys Res Commun. 1972 Jan 31;46(2):508–515. doi: 10.1016/s0006-291x(72)80168-2. [DOI] [PubMed] [Google Scholar]
  133. Middleton B. The mitochondrial long-chain trifunctional enzyme: 2-enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase and 3-oxoacyl-CoA thiolase. Biochem Soc Trans. 1994 May;22(2):427–431. doi: 10.1042/bst0220427. [DOI] [PubMed] [Google Scholar]
  134. Middleton B. The oxoacyl-coenzyme A thiolases of animal tissues. Biochem J. 1973 Apr;132(4):717–730. doi: 10.1042/bj1320717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Millington D. S., Norwood D. L., Kodo N., Roe C. R., Inoue F. Application of fast atom bombardment with tandem mass spectrometry and liquid chromatography/mass spectrometry to the analysis of acylcarnitines in human urine, blood, and tissue. Anal Biochem. 1989 Aug 1;180(2):331–339. doi: 10.1016/0003-2697(89)90441-7. [DOI] [PubMed] [Google Scholar]
  136. Mills S. E., Foster D. W., McGarry J. D. Effects of pH on the interaction of substrates and malonyl-CoA with mitochondrial carnitine palmitoyltransferase I. Biochem J. 1984 Apr 15;219(2):601–608. doi: 10.1042/bj2190601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Moir A. M., Zammit V. A. Insulin-independent and extremely rapid switch in the partitioning of hepatic fatty acids from oxidation to esterification in starved-refed diabetic rats. Possible roles for changes in cell pH and volume. Biochem J. 1995 Feb 1;305(Pt 3):953–958. doi: 10.1042/bj3050953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Mynatt R. L., Greenhaw J. J., Cook G. A. Cholate extracts of mitochondrial outer membranes increase inhibition by malonyl-CoA of carnitine palmitoyltransferase-I by a mechanism involving phospholipids. Biochem J. 1994 May 1;299(Pt 3):761–767. doi: 10.1042/bj2990761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Nada M. A., Rhead W. J., Sprecher H., Schulz H., Roe C. R. Evidence for intermediate channeling in mitochondrial beta-oxidation. J Biol Chem. 1995 Jan 13;270(2):530–535. doi: 10.1074/jbc.270.2.530. [DOI] [PubMed] [Google Scholar]
  140. Naito E., Indo Y., Tanaka K. Identification of two variant short chain acyl-coenzyme A dehydrogenase alleles, each containing a different point mutation in a patient with short chain acyl-coenzyme A dehydrogenase deficiency. J Clin Invest. 1990 May;85(5):1575–1582. doi: 10.1172/JCI114607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Naito E., Indo Y., Tanaka K. Short chain acyl-coenzyme A dehydrogenase (SCAD) deficiency. Immunochemical demonstration of molecular heterogeneity due to variant SCAD with differing stability. J Clin Invest. 1989 Nov;84(5):1671–1674. doi: 10.1172/JCI114346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Neely J. R., Bowman R. H., Morgan H. E. Effects of ventricular pressure development and palmitate on glucose transport. Am J Physiol. 1969 Apr;216(4):804–811. doi: 10.1152/ajplegacy.1969.216.4.804. [DOI] [PubMed] [Google Scholar]
  143. Niezen-Koning K. E., van Spronsen F. J., Ijlst L., Wanders R. J., Brivet M., Duran M., Reijngoud D. J., Heymans H. S., Smit G. P. A patient with lethal cardiomyopathy and a carnitine-acylcarnitine translocase deficiency. J Inherit Metab Dis. 1995;18(2):230–232. doi: 10.1007/BF00711775. [DOI] [PubMed] [Google Scholar]
  144. Norum K. R., Farstad M., Bremer J. The submitochondrial distribution of acid:CoA ligase (AMP) and palmityl-CoA:carnitine palmityltransferase in rat liver mitochondria. Biochem Biophys Res Commun. 1966 Sep 8;24(5):797–804. doi: 10.1016/0006-291x(66)90397-4. [DOI] [PubMed] [Google Scholar]
  145. Olowe Y., Schulz H. Regulation of thiolases from pig heart. Control of fatty acid oxidation in heart. Eur J Biochem. 1980 Aug;109(2):425–429. doi: 10.1111/j.1432-1033.1980.tb04811.x. [DOI] [PubMed] [Google Scholar]
  146. Oram J. F., Bennetch S. L., Neely J. R. Regulation of fatty acid utilization in isolated perfused rat hearts. J Biol Chem. 1973 Aug 10;248(15):5299–5309. [PubMed] [Google Scholar]
  147. Osmundsen H., Bjørnstad K. Inhibitory effects of some long-chain unsaturated fatty acids on mitochondrial beta-oxidation. Effects of streptozotocin-induced diabetes on mitochondrial beta-oxidation of polyunsaturated fatty acids. Biochem J. 1985 Sep 1;230(2):329–337. doi: 10.1042/bj2300329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Osumi T., Hashimoto T. Purification and properties of mitochondrial and peroxisomal 3-hydroxyacyl-CoA dehydrogenase from rat liver. Arch Biochem Biophys. 1980 Aug;203(1):372–383. doi: 10.1016/0003-9861(80)90189-7. [DOI] [PubMed] [Google Scholar]
  149. Palosaari P. M., Kilponen J. M., Sormunen R. T., Hassinen I. E., Hiltunen J. K. Delta 3,delta 2-enoyl-CoA isomerases. Characterization of the mitochondrial isoenzyme in the rat. J Biol Chem. 1990 Feb 25;265(6):3347–3353. [PubMed] [Google Scholar]
  150. Pande S. V., Brivet M., Slama A., Demaugre F., Aufrant C., Saudubray J. M. Carnitine-acylcarnitine translocase deficiency with severe hypoglycemia and auriculo ventricular block. Translocase assay in permeabilized fibroblasts. J Clin Invest. 1993 Mar;91(3):1247–1252. doi: 10.1172/JCI116288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Park E. A., Mynatt R. L., Cook G. A., Kashfi K. Insulin regulates enzyme activity, malonyl-CoA sensitivity and mRNA abundance of hepatic carnitine palmitoyltransferase-I. Biochem J. 1995 Sep 15;310(Pt 3):853–858. doi: 10.1042/bj3100853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Pourfarzam M., Schaefer J., Turnbull D. M., Bartlett K. Analysis of fatty acid oxidation intermediates in cultured fibroblasts to detect mitochondrial oxidation disorders. Clin Chem. 1994 Dec;40(12):2267–2275. [PubMed] [Google Scholar]
  153. Powell P. J., Lau S. M., Killian D., Thorpe C. Interaction of acyl coenzyme A substrates and analogues with pig kidney medium-chain acyl-coA dehydrogenase. Biochemistry. 1987 Jun 16;26(12):3704–3710. doi: 10.1021/bi00386a066. [DOI] [PubMed] [Google Scholar]
  154. Przyrembel H., Wendel U., Becker K., Bremer H. J., Bruinvis L., Ketting D., Wadman S. K. Glutaric aciduria type II: report on a previously undescribed metabolic disorder. Clin Chim Acta. 1976 Jan 16;66(2):227–239. doi: 10.1016/0009-8981(76)90060-7. [DOI] [PubMed] [Google Scholar]
  155. Quant P. A., Makins R. A. Metabolic control analysis of hepatic beta-oxidation: the top-down approach. Biochem Soc Trans. 1994 May;22(2):441–446. doi: 10.1042/bst0220441. [DOI] [PubMed] [Google Scholar]
  156. Quant P. A., Robin D., Robin P., Ferre P., Brand M. D., Girard J. Control of hepatic mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase during the foetal/neonatal transition, suckling and weaning in the rat. Eur J Biochem. 1991 Jan 30;195(2):449–454. doi: 10.1111/j.1432-1033.1991.tb15724.x. [DOI] [PubMed] [Google Scholar]
  157. Quant P. A., Robin D., Robin P., Girard J., Brand M. D. A top-down control analysis in isolated rat liver mitochondria: can the 3-hydroxy-3-methylglutaryl-CoA pathway be rate-controlling for ketogenesis? Biochim Biophys Acta. 1993 Feb 13;1156(2):135–143. doi: 10.1016/0304-4165(93)90128-u. [DOI] [PubMed] [Google Scholar]
  158. RANDLE P. J., GARLAND P. B., HALES C. N., NEWSHOLME E. A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963 Apr 13;1(7285):785–789. doi: 10.1016/s0140-6736(63)91500-9. [DOI] [PubMed] [Google Scholar]
  159. Reichmann H., De Vivo D. C. Coordinate enzymatic activity of beta-oxidation and purine nucleotide cycle in a diversity of muscle and other organs of rat. Comp Biochem Physiol B. 1991;98(2-3):327–331. doi: 10.1016/0305-0491(91)90186-h. [DOI] [PubMed] [Google Scholar]
  160. Rinaldo P., O'Shea J. J., Coates P. M., Hale D. E., Stanley C. A., Tanaka K. Medium-chain acyl-CoA dehydrogenase deficiency. Diagnosis by stable-isotope dilution measurement of urinary n-hexanoylglycine and 3-phenylpropionylglycine. N Engl J Med. 1988 Nov 17;319(20):1308–1313. doi: 10.1056/NEJM198811173192003. [DOI] [PubMed] [Google Scholar]
  161. Rinaldo P., Welch R. D., Previs S. F., Schmidt-Sommerfeld E., Gargus J. J., O'Shea J. J., Zinn A. B. Ethylmalonic/adipic aciduria: effects of oral medium-chain triglycerides, carnitine, and glycine on urinary excretion of organic acids, acylcarnitines, and acylglycines. Pediatr Res. 1991 Sep;30(3):216–221. doi: 10.1203/00006450-199109000-00002. [DOI] [PubMed] [Google Scholar]
  162. Rocchiccioli F., Wanders R. J., Aubourg P., Vianey-Liaud C., Ijlst L., Fabre M., Cartier N., Bougneres P. F. Deficiency of long-chain 3-hydroxyacyl-CoA dehydrogenase: a cause of lethal myopathy and cardiomyopathy in early childhood. Pediatr Res. 1990 Dec;28(6):657–662. doi: 10.1203/00006450-199012000-00023. [DOI] [PubMed] [Google Scholar]
  163. Rozen R., Vockley J., Zhou L., Milos R., Willard J., Fu K., Vicanek C., Low-Nang L., Torban E., Fournier B. Isolation and expression of a cDNA encoding the precursor for a novel member (ACADSB) of the acyl-CoA dehydrogenase gene family. Genomics. 1994 Nov 15;24(2):280–287. doi: 10.1006/geno.1994.1617. [DOI] [PubMed] [Google Scholar]
  164. Ruzicka F. J., Beinert H. A new iron-sulfur flavoprotein of the respiratory chain. A component of the fatty acid beta oxidation pathway. J Biol Chem. 1977 Dec 10;252(23):8440–8445. [PubMed] [Google Scholar]
  165. STERN J. R., DEL CAMPILLO A. Enzymes of fatty acid metabolism. II. Properties of crystalline crotonase. J Biol Chem. 1956 Feb;218(2):985–1002. [PubMed] [Google Scholar]
  166. STERN J. R., DEL CAMPILLO A., RAW I. Enzymes of fatty acid metabolism. I. General introduction; crystalline crotonase. J Biol Chem. 1956 Feb;218(2):971–983. [PubMed] [Google Scholar]
  167. Saddik M., Gamble J., Witters L. A., Lopaschuk G. D. Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. J Biol Chem. 1993 Dec 5;268(34):25836–25845. [PubMed] [Google Scholar]
  168. Saggerson E. D., Carpenter C. A. Carnitine palmitoyltransferase and carnitine octanoyltransferase activities in liver, kidney cortex, adipocyte, lactating mammary gland, skeletal muscle and heart. FEBS Lett. 1981 Jul 6;129(2):229–232. doi: 10.1016/0014-5793(81)80171-8. [DOI] [PubMed] [Google Scholar]
  169. Saijo T., Welch W. J., Tanaka K. Intramitochondrial folding and assembly of medium-chain acyl-CoA dehydrogenase (MCAD). Demonstration of impaired transfer of K304E-variant MCAD from its complex with hsp60 to the native tetramer. J Biol Chem. 1994 Feb 11;269(6):4401–4408. [PubMed] [Google Scholar]
  170. Schifferdecker J., Schulz H. The inhibition of L-3-hydroxyacyl-CoA dehydrogenase by acetoacetyl-CoA and the possible effect of this inhibitor on fatty acid oxidation. Life Sci. 1974 Apr 16;14(8):1487–1492. doi: 10.1016/0024-3205(74)90159-3. [DOI] [PubMed] [Google Scholar]
  171. Scholte H. R., Luyt-Houwen I. E., Dubelaar M. L., Hulsmann W. C. The source of malonyl-CoA in rat heart. The calcium paradox releases acetyl-CoA carboxylase and not propionyl-CoA carboxylase. FEBS Lett. 1986 Mar 17;198(1):47–50. doi: 10.1016/0014-5793(86)81182-6. [DOI] [PubMed] [Google Scholar]
  172. Seubert W., Lamberts I., Kramer R., Ohly B. On the mechanism of malonyl-CoA-independent fatty acid synthesis. I. The mechanism of elongation of long-chain fatty acids by acetyl-CoA. Biochim Biophys Acta. 1968 Dec 18;164(3):498–517. doi: 10.1016/0005-2760(68)90180-x. [DOI] [PubMed] [Google Scholar]
  173. Sims H. F., Brackett J. C., Powell C. K., Treem W. R., Hale D. E., Bennett M. J., Gibson B., Shapiro S., Strauss A. W. The molecular basis of pediatric long chain 3-hydroxyacyl-CoA dehydrogenase deficiency associated with maternal acute fatty liver of pregnancy. Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):841–845. doi: 10.1073/pnas.92.3.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Singh B., Stakkestad J. A., Bremer J., Borrebaek B. Determination of malonyl-coenzyme A in rat heart, kidney, and liver: a comparison between acetyl-coenzyme A and butyryl-coenzyme A as fatty acid synthase primers in the assay procedure. Anal Biochem. 1984 Apr;138(1):107–111. doi: 10.1016/0003-2697(84)90776-0. [DOI] [PubMed] [Google Scholar]
  175. Singh R., Shepherd I. M., Derrick J. P., Ramsay R. R., Sherratt H. S., Turnbull D. M. A case of carnitine palmitoyltransferase II deficiency in human skeletal muscle. FEBS Lett. 1988 Dec 5;241(1-2):126–130. doi: 10.1016/0014-5793(88)81044-5. [DOI] [PubMed] [Google Scholar]
  176. Sleboda J., Pourfarzam M., Bartlett K., Osmundsen H. Effects of added l-carnitine, acetyl-CoA and CoA on peroxisomal beta-oxidation of [U-14C]hexadecanoate by isolated peroxisomal fractions. Biochim Biophys Acta. 1995 Oct 5;1258(3):309–318. doi: 10.1016/0005-2760(95)00138-3. [DOI] [PubMed] [Google Scholar]
  177. Smeland T. E., Nada M., Cuebas D., Schulz H. NADPH-dependent beta-oxidation of unsaturated fatty acids with double bonds extending from odd-numbered carbon atoms. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6673–6677. doi: 10.1073/pnas.89.15.6673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Staack H., Binstock J. F., Schulz H. Purification and properties of a pig heart thiolase with broad chain length specificity and comparison of thiolases from pig heart and Escherichia coli. J Biol Chem. 1978 Mar 25;253(6):1827–1831. [PubMed] [Google Scholar]
  179. Stanley C. A., Hale D. E., Berry G. T., Deleeuw S., Boxer J., Bonnefont J. P. Brief report: a deficiency of carnitine-acylcarnitine translocase in the inner mitochondrial membrane. N Engl J Med. 1992 Jul 2;327(1):19–23. doi: 10.1056/NEJM199207023270104. [DOI] [PubMed] [Google Scholar]
  180. Stanley C. A. New genetic defects in mitochondrial fatty acid oxidation and carnitine deficiency. Adv Pediatr. 1987;34:59–88. [PubMed] [Google Scholar]
  181. Stanley C. A., Treem W. R., Hale D. E., Coates P. M. A genetic defect in carnitine transport causing primary carnitine deficiency. Prog Clin Biol Res. 1990;321:457–464. [PubMed] [Google Scholar]
  182. Stanley K. K., Tubbs P. K. The occurrence of intermediates in mitochondrial fatty acid oxidation. FEBS Lett. 1974 Mar 1;39(3):325–328. doi: 10.1016/0014-5793(74)80141-9. [DOI] [PubMed] [Google Scholar]
  183. Stanley K. K., Tubbs P. K. The role of intermediates in mitochondrial fatty acid oxidation. Biochem J. 1975 Jul;150(1):77–88. doi: 10.1042/bj1500077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Strauss A. W., Powell C. K., Hale D. E., Anderson M. M., Ahuja A., Brackett J. C., Sims H. F. Molecular basis of human mitochondrial very-long-chain acyl-CoA dehydrogenase deficiency causing cardiomyopathy and sudden death in childhood. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10496–10500. doi: 10.1073/pnas.92.23.10496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  185. Sumegi B., Srere P. A. Binding of the enzymes of fatty acid beta-oxidation and some related enzymes to pig heart inner mitochondrial membrane. J Biol Chem. 1984 Jul 25;259(14):8748–8752. [PubMed] [Google Scholar]
  186. Suzuki H., Kawarabayasi Y., Kondo J., Abe T., Nishikawa K., Kimura S., Hashimoto T., Yamamoto T. Structure and regulation of rat long-chain acyl-CoA synthetase. J Biol Chem. 1990 May 25;265(15):8681–8685. [PubMed] [Google Scholar]
  187. Taegtmeyer H., Hems R., Krebs H. A. Utilization of energy-providing substrates in the isolated working rat heart. Biochem J. 1980 Mar 15;186(3):701–711. doi: 10.1042/bj1860701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  188. Taroni F., Verderio E., Dworzak F., Willems P. J., Cavadini P., DiDonato S. Identification of a common mutation in the carnitine palmitoyltransferase II gene in familial recurrent myoglobinuria patients. Nat Genet. 1993 Jul;4(3):314–320. doi: 10.1038/ng0793-314. [DOI] [PubMed] [Google Scholar]
  189. Taroni F., Verderio E., Fiorucci S., Cavadini P., Finocchiaro G., Uziel G., Lamantea E., Gellera C., DiDonato S. Molecular characterization of inherited carnitine palmitoyltransferase II deficiency. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8429–8433. doi: 10.1073/pnas.89.18.8429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Tein I., De Vivo D. C., Hale D. E., Clarke J. T., Zinman H., Laxer R., Shore A., DiMauro S. Short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency in muscle: a new cause for recurrent myoglobinuria and encephalopathy. Ann Neurol. 1991 Sep;30(3):415–419. doi: 10.1002/ana.410300315. [DOI] [PubMed] [Google Scholar]
  191. Tein I., Demaugre F., Bonnefont J. P., Saudubray J. M. Normal muscle CPT1 and CPT2 activities in hepatic presentation patients with CPT1 deficiency in fibroblasts. Tissue specific isoforms of CPT1? J Neurol Sci. 1989 Sep;92(2-3):229–245. doi: 10.1016/0022-510x(89)90139-1. [DOI] [PubMed] [Google Scholar]
  192. Thampy K. G. Formation of malonyl coenzyme A in rat heart. Identification and purification of an isozyme of A carboxylase from rat heart. J Biol Chem. 1989 Oct 25;264(30):17631–17634. [PubMed] [Google Scholar]
  193. Thorpe C., Kim J. J. Structure and mechanism of action of the acyl-CoA dehydrogenases. FASEB J. 1995 Jun;9(9):718–725. doi: 10.1096/fasebj.9.9.7601336. [DOI] [PubMed] [Google Scholar]
  194. Treem W. R., Stanley C. A., Finegold D. N., Hale D. E., Coates P. M. Primary carnitine deficiency due to a failure of carnitine transport in kidney, muscle, and fibroblasts. N Engl J Med. 1988 Nov 17;319(20):1331–1336. doi: 10.1056/NEJM198811173192006. [DOI] [PubMed] [Google Scholar]
  195. Tserng K. Y., Jin S. J., Chen L. S. Reduction pathway of cis-5 unsaturated fatty acids in intact rat-liver and rat-heart mitochondria: assessment with stable-isotype-labelled substrates. Biochem J. 1996 Jan 15;313(Pt 2):581–588. doi: 10.1042/bj3130581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Turnbull D. M., Bartlett K., Stevens D. L., Alberti K. G., Gibson G. J., Johnson M. A., McCulloch A. J., Sherratt H. S. Short-chain acyl-CoA dehydrogenase deficiency associated with a lipid-storage myopathy and secondary carnitine deficiency. N Engl J Med. 1984 Nov 8;311(19):1232–1236. doi: 10.1056/NEJM198411083111906. [DOI] [PubMed] [Google Scholar]
  197. Turnbull D. M., Bone A. J., Bartlett K., Koundakjian P. P., Sherratt H. S. The effects of valproate on intermediary metabolism in isolated rat hepatocytes and intact rats. Biochem Pharmacol. 1983 Jun 15;32(12):1887–1892. doi: 10.1016/0006-2952(83)90054-0. [DOI] [PubMed] [Google Scholar]
  198. Uchida Y., Izai K., Orii T., Hashimoto T. Novel fatty acid beta-oxidation enzymes in rat liver mitochondria. II. Purification and properties of enoyl-coenzyme A (CoA) hydratase/3-hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase trifunctional protein. J Biol Chem. 1992 Jan 15;267(2):1034–1041. [PubMed] [Google Scholar]
  199. Velasco G., Sánchez C., Geelen M. J., Guzmán M. Are cytoskeletal components involved in the control of hepatic carnitine palmitoyltransferase I activity? Biochem Biophys Res Commun. 1996 Jul 25;224(3):754–759. doi: 10.1006/bbrc.1996.1095. [DOI] [PubMed] [Google Scholar]
  200. Vianey-Liaud C., Divry P., Gregersen N., Mathieu M. The inborn errors of mitochondrial fatty acid oxidation. J Inherit Metab Dis. 1987;10 (Suppl 1):159–200. doi: 10.1007/BF01812855. [DOI] [PubMed] [Google Scholar]
  201. Vockley J. The changing face of disorders of fatty acid oxidation. Mayo Clin Proc. 1994 Mar;69(3):249–257. doi: 10.1016/s0025-6196(12)61064-7. [DOI] [PubMed] [Google Scholar]
  202. WAKIL S. J., GREEN D. E., MII S., MAHLER H. R. Studies on the fatty acid oxidizing system of animal tissues. VI. beta-Hydroxyacyl coenzyme A dehydrogenase. J Biol Chem. 1954 Apr;207(2):631–638. [PubMed] [Google Scholar]
  203. Wang H. Y., Baxter C. F., Jr, Schulz H. Regulation of fatty acid beta-oxidation in rat heart mitochondria. Arch Biochem Biophys. 1991 Sep;289(2):274–280. doi: 10.1016/0003-9861(91)90472-u. [DOI] [PubMed] [Google Scholar]
  204. Waterson R. M., Hill R. L. Enoyl coenzyme A hydratase (crotonase). Catalytic properties of crotonase and its possible regulatory role in fatty acid oxidation. J Biol Chem. 1972 Aug 25;247(16):5258–5265. [PubMed] [Google Scholar]
  205. Watmough N. J., Turnbull D. M., Sherratt H. S., Bartlett K. Measurement of the acyl-CoA intermediates of beta-oxidation by h.p.l.c. with on-line radiochemical and photodiode-array detection. Application to the study of [U-14C]hexadecanoate oxidation by intact rat liver mitochondria. Biochem J. 1989 Aug 15;262(1):261–269. doi: 10.1042/bj2620261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  206. Weinberger M. J., Rinaldo P., Strauss A. W., Bennett M. J. Intact alpha-subunit is required for membrane-binding of human mitochondrial trifunctional beta-oxidation protein, but is not necessary for conferring 3-ketoacyl-CoA thiolase activity to the beta-subunit. Biochem Biophys Res Commun. 1995 Apr 6;209(1):47–52. doi: 10.1006/bbrc.1995.1468. [DOI] [PubMed] [Google Scholar]
  207. Weis B. C., Cowan A. T., Brown N., Foster D. W., McGarry J. D. Use of a selective inhibitor of liver carnitine palmitoyltransferase I (CPT I) allows quantification of its contribution to total CPT I activity in rat heart. Evidence that the dominant cardiac CPT I isoform is identical to the skeletal muscle enzyme. J Biol Chem. 1994 Oct 21;269(42):26443–26448. [PubMed] [Google Scholar]
  208. Weis B. C., Esser V., Foster D. W., McGarry J. D. Rat heart expresses two forms of mitochondrial carnitine palmitoyltransferase I. The minor component is identical to the liver enzyme. J Biol Chem. 1994 Jul 22;269(29):18712–18715. [PubMed] [Google Scholar]
  209. Winder W. W., Hardie D. G. Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol. 1996 Feb;270(2 Pt 1):E299–E304. doi: 10.1152/ajpendo.1996.270.2.E299. [DOI] [PubMed] [Google Scholar]
  210. Wit-Peeters E. M., Scholte H. R., van den Akker F., de Nie I. Intramitochondrial localization of palmityl-CoA dehydrogenase, beta-hydroxyacyl-CoA dehydrogenase and enoyl-CoA hydratase in guinea-pig heart. Biochim Biophys Acta. 1971 Feb 2;231(1):23–31. doi: 10.1016/0005-2760(71)90252-9. [DOI] [PubMed] [Google Scholar]
  211. Yamaguchi S., Indo Y., Coates P. M., Hashimoto T., Tanaka K. Identification of very-long-chain acyl-CoA dehydrogenase deficiency in three patients previously diagnosed with long-chain acyl-CoA dehydrogenase deficiency. Pediatr Res. 1993 Jul;34(1):111–113. doi: 10.1203/00006450-199307000-00025. [DOI] [PubMed] [Google Scholar]
  212. Yamaguchi S., Orii T., Suzuki Y., Maeda K., Oshima M., Hashimoto T. Newly identified forms of electron transfer flavoprotein deficiency in two patients with glutaric aciduria type II. Pediatr Res. 1991 Jan;29(1):60–63. doi: 10.1203/00006450-199101000-00012. [DOI] [PubMed] [Google Scholar]
  213. Yokota I., Indo Y., Coates P. M., Tanaka K. Molecular basis of medium chain acyl-coenzyme A dehydrogenase deficiency. An A to G transition at position 985 that causes a lysine-304 to glutamate substitution in the mature protein is the single prevalent mutation. J Clin Invest. 1990 Sep;86(3):1000–1003. doi: 10.1172/JCI114761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  214. Zammit V. A. Role of insulin in hepatic fatty acid partitioning: emerging concepts. Biochem J. 1996 Feb 15;314(Pt 1):1–14. doi: 10.1042/bj3140001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  215. Zierz S., Engel A. G. Regulatory properties of a mutant carnitine palmitoyltransferase in human skeletal muscle. Eur J Biochem. 1985 May 15;149(1):207–214. doi: 10.1111/j.1432-1033.1985.tb08913.x. [DOI] [PubMed] [Google Scholar]
  216. van der Vusse G. J., Glatz J. F., Stam H. C., Reneman R. S. Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev. 1992 Oct;72(4):881–940. doi: 10.1152/physrev.1992.72.4.881. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES