Abstract
Tobacco peroxidase (36 kDa, pI 3.5) exhibits unique catalytic and spectral properties that are modulated by pH, calcium and magnesium ions. It catalyses the oxidation of veratryl alcohol by hydrogen peroxide over a wide pH range (1.5-5.0) in the presence of these metal ions with a pH optimum of 1.8. This is the only example of a holoperoxidase described so far that is active and comparatively stable at such a low pH. The enhancement of tobacco peroxidase activity by magnesium ions is to our knowledge the first example of a magnesium-induced peroxidase activation. UV/visible spectra of tobacco peroxidase showed that the Soret band shifted and its absorption coefficient increased upon the addition of calcium or magnesium ions and on lowering the pH. The tobacco peroxidase spectrum at pH 1.85, in the presence of calcium chloride (> 50 mM), is similar to that of lignin peroxidase at pH 6.0, with the Soret band shifting from 403 to 409 nm and the molar absorption coefficient increasing from 108,000 to 148,000 +/- 2000 M-1.cm-1 (results given +/- S.E.M.; n = 3). The data provide evidence for a low-affinity site for bivalent metal ion binding in addition to the two constitutive calcium sites that are present in all plant peroxidases. The presence of a glutamic acid residue (Glu-141) at the entrance to the haem-binding pocket, analogous to Glu-146 in lignin peroxidase and not present in other plant peroxidases, may account for these novel properties.
Full Text
The Full Text of this article is available as a PDF (383.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnao M. B., Casas J. L., del Río J. A., Acosta M., García-Cánovas F. An enzymatic colorimetric method for measuring naringin using 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid)(ABTS) in the presence of peroxidase. Anal Biochem. 1990 Mar;185(2):335–338. doi: 10.1016/0003-2697(90)90304-r. [DOI] [PubMed] [Google Scholar]
- Finzel B. C., Poulos T. L., Kraut J. Crystal structure of yeast cytochrome c peroxidase refined at 1.7-A resolution. J Biol Chem. 1984 Nov 10;259(21):13027–13036. [PubMed] [Google Scholar]
- Gazaryan I. G., Lagrimini L. M. Purification and unusual kinetic properties of a tobacco anionic peroxidase. Phytochemistry. 1996 Mar;41(4):1029–1034. doi: 10.1016/0031-9422(95)00779-2. [DOI] [PubMed] [Google Scholar]
- Kalb V. F., Jr, Bernlohr R. W. A new spectrophotometric assay for protein in cell extracts. Anal Biochem. 1977 Oct;82(2):362–371. doi: 10.1016/0003-2697(77)90173-7. [DOI] [PubMed] [Google Scholar]
- Khindaria A., Yamazaki I., Aust S. D. Stabilization of the veratryl alcohol cation radical by lignin peroxidase. Biochemistry. 1996 May 21;35(20):6418–6424. doi: 10.1021/bi9601666. [DOI] [PubMed] [Google Scholar]
- Khindaria A., Yamazaki I., Aust S. D. Veratryl alcohol oxidation by lignin peroxidase. Biochemistry. 1995 Dec 26;34(51):16860–16869. doi: 10.1021/bi00051a037. [DOI] [PubMed] [Google Scholar]
- Lagrimini L. M., Burkhart W., Moyer M., Rothstein S. Molecular cloning of complementary DNA encoding the lignin-forming peroxidase from tobacco: Molecular analysis and tissue-specific expression. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7542–7546. doi: 10.1073/pnas.84.21.7542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patterson W. R., Poulos T. L. Crystal structure of recombinant pea cytosolic ascorbate peroxidase. Biochemistry. 1995 Apr 4;34(13):4331–4341. doi: 10.1021/bi00013a023. [DOI] [PubMed] [Google Scholar]
- Poulos T. L., Edwards S. L., Wariishi H., Gold M. H. Crystallographic refinement of lignin peroxidase at 2 A. J Biol Chem. 1993 Feb 25;268(6):4429–4440. doi: 10.2210/pdb1lga/pdb. [DOI] [PubMed] [Google Scholar]
- Rasmussen C. B., Dunford H. B., Welinder K. G. Rate enhancement of compound I formation of barley peroxidase by ferulic acid, caffeic acid, and coniferyl alcohol. Biochemistry. 1995 Mar 28;34(12):4022–4029. doi: 10.1021/bi00012a021. [DOI] [PubMed] [Google Scholar]
- Schuller D. J., Ban N., Huystee R. B., McPherson A., Poulos T. L. The crystal structure of peanut peroxidase. Structure. 1996 Mar 15;4(3):311–321. doi: 10.1016/s0969-2126(96)00035-4. [DOI] [PubMed] [Google Scholar]
- Tuisel H., Sinclair R., Bumpus J. A., Ashbaugh W., Brock B. J., Aust S. D. Lignin peroxidase H2 from Phanerochaete chrysosporium: purification, characterization and stability to temperature and pH. Arch Biochem Biophys. 1990 May 15;279(1):158–166. doi: 10.1016/0003-9861(90)90476-f. [DOI] [PubMed] [Google Scholar]
- Welinder K. G. Covalent structure of the glycoprotein horseradish peroxidase (EC 1.11.1.7). FEBS Lett. 1976 Dec 15;72(1):19–23. doi: 10.1016/0014-5793(76)80804-6. [DOI] [PubMed] [Google Scholar]
- de Boer H. A., Zhang Y. Z., Collins C., Reddy C. A. Analysis of nucleotide sequences of two ligninase cDNAs from a white-rot filamentous fungus, Phanerochaete chrysosporium. Gene. 1987;60(1):93–102. doi: 10.1016/0378-1119(87)90217-4. [DOI] [PubMed] [Google Scholar]