Abstract
Cystathionine beta-lyase is a key enzyme in sulphur metabolism that catalyses the second reaction specific for methionine biosynthesis, the pyridoxal 5'-phosphate-dependent beta-cleavage of cystathionine to produce homocysteine. To obtain insight into the biochemical properties of the plant enzyme, the cDNA encoding cystathionine beta-lyase from Arabidopsis thaliana was used to construct an overproducing Escherichia coli strain. The recombinant enzyme was isolated at high yield (29 mg of pure protein/litre of cell culture) using an efficient two-step purification procedure. Physicochemical properties of the Arabidopsis cystathionine beta-lyase were similar to those previously reported for the bacterial enzymes. In particular, the native recombinant protein is a tetramer composed of four identical subunits of 46 kDa, each being associated with one molecule of pyridoxal 5'-phosphate. Interaction between the apoenzyme and pyridoxal 5'-phosphate is extremely tight, being characterized by a Kd value of 0.5 microM. Purification and sequencing of the phosphopyridoxyl peptide established that Schiff base formation between the cofactor and the holoenzyme occurs at lysine-278. The substrate specificity of the recombinant cystathionine beta-lyase resembles that of the enzyme isolated from other sources, cystathionine and djenkolate being the most effective substrates. The cystathionine analogue aminoethoxyvinylglycine irreversibly inactivates the recombinant cystathionine beta-lyase. The inactivation is accompanied by dramatic modification of the spectral properties of the enzyme that can be attributed to the attack of the azomethine linkage between pyridoxal 5'-phosphate and lysine-278 of the polypeptide by aminoethoxyvinylglycine.
Full Text
The Full Text of this article is available as a PDF (448.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander F. W., Sandmeier E., Mehta P. K., Christen P. Evolutionary relationships among pyridoxal-5'-phosphate-dependent enzymes. Regio-specific alpha, beta and gamma families. Eur J Biochem. 1994 Feb 1;219(3):953–960. doi: 10.1111/j.1432-1033.1994.tb18577.x. [DOI] [PubMed] [Google Scholar]
- Belfaiza J., Parsot C., Martel A., de la Tour C. B., Margarita D., Cohen G. N., Saint-Girons I. Evolution in biosynthetic pathways: two enzymes catalyzing consecutive steps in methionine biosynthesis originate from a common ancestor and possess a similar regulatory region. Proc Natl Acad Sci U S A. 1986 Feb;83(4):867–871. doi: 10.1073/pnas.83.4.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Burnell J. N., Whatley F. R. Sulphur metabolism in Paracoccus denitrificans. Purification, properties and regulation of serine transacetylase, O-acetylserine sulphydrylase and beta-cystathionase. Biochim Biophys Acta. 1977 Mar 15;481(1):246–265. doi: 10.1016/0005-2744(77)90157-7. [DOI] [PubMed] [Google Scholar]
- Cherest H., Thomas D., Surdin-Kerjan Y. Cysteine biosynthesis in Saccharomyces cerevisiae occurs through the transsulfuration pathway which has been built up by enzyme recruitment. J Bacteriol. 1993 Sep;175(17):5366–5374. doi: 10.1128/jb.175.17.5366-5374.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Curien G., Dumas R., Ravanel S., Douce R. Characterization of an Arabidopsis thaliana cDNA encoding an S-adenosylmethionine-sensitive threonine synthase. Threonine synthase from higher plants. FEBS Lett. 1996 Jul 15;390(1):85–90. doi: 10.1016/0014-5793(96)00633-3. [DOI] [PubMed] [Google Scholar]
- DELAVIER-KLUTCHKO C., FLAVIN M. ENZYMATIC SYNTHESIS AND CLEAVAGE OF CYSTATHIONINE IN FUNGI AND BACTERIA. J Biol Chem. 1965 Jun;240:2537–2549. [PubMed] [Google Scholar]
- Datko A. H., Mudd S. H. Methionine biosynthesis in lemna: inhibitor studies. Plant Physiol. 1982 May;69(5):1070–1076. doi: 10.1104/pp.69.5.1070. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Droux M., Martin J., Sajus P., Douce R. Purification and characterization of O-acetylserine (thiol) lyase from spinach chloroplasts. Arch Biochem Biophys. 1992 Jun;295(2):379–390. doi: 10.1016/0003-9861(92)90531-z. [DOI] [PubMed] [Google Scholar]
- Droux M., Ravanel S., Douce R. Methionine biosynthesis in higher plants. II. Purification and characterization of cystathionine beta-lyase from spinach chloroplasts. Arch Biochem Biophys. 1995 Jan 10;316(1):585–595. doi: 10.1006/abbi.1995.1078. [DOI] [PubMed] [Google Scholar]
- Dwivedi C. M., Ragin R. C., Uren J. R. Cloning, purification, and characterization of beta-cystathionase from Escherichia coli. Biochemistry. 1982 Jun 22;21(13):3064–3069. doi: 10.1021/bi00256a005. [DOI] [PubMed] [Google Scholar]
- Gentry-Weeks C. R., Keith J. M., Thompson J. Toxicity of Bordetella avium beta-cystathionase toward MC3T3-E1 osteogenic cells. J Biol Chem. 1993 Apr 5;268(10):7298–7314. [PubMed] [Google Scholar]
- Gentry-Weeks C. R., Spokes J., Thompson J. beta-Cystathionase from Bordetella avium. Role(s) of lysine 214 and cysteine residues in activity and cytotoxicity. J Biol Chem. 1995 Mar 31;270(13):7695–7702. doi: 10.1074/jbc.270.13.7695. [DOI] [PubMed] [Google Scholar]
- Giovanelli J., Mudd S. H. Transsulfuration in higher plants. Partial purification and properties of beta-cystathionase of spinach. Biochim Biophys Acta. 1971 Mar 10;227(3):654–670. doi: 10.1016/0005-2744(71)90015-5. [DOI] [PubMed] [Google Scholar]
- Giovanelli J., Owens L. D., Mudd S. H. Mechanism of inhibition of spinach beta-cystathionase by rhizobitoxine. Biochim Biophys Acta. 1971 Mar 10;227(3):671–684. doi: 10.1016/0005-2744(71)90016-7. [DOI] [PubMed] [Google Scholar]
- Laber B., Clausen T., Huber R., Messerschmidt A., Egner U., Müller-Fahrnow A., Pohlenz H. D. Cloning, purification, and crystallization of Escherichia coli cystathionine beta-lyase. FEBS Lett. 1996 Jan 22;379(1):94–96. doi: 10.1016/0014-5793(95)01499-3. [DOI] [PubMed] [Google Scholar]
- Martel A., Bouthier de la Tour C., Le Goffic F. Pyridoxal 5'phosphate binding site of Escherichia coli beta cystathionase and cystathionine gamma synthase comparison of their sequences. Biochem Biophys Res Commun. 1987 Sep 15;147(2):565–571. doi: 10.1016/0006-291x(87)90968-5. [DOI] [PubMed] [Google Scholar]
- Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
- Owens L. D., Guggenheim S., Hilton J. L. Rhizobium-synthesized phytototoxin: an inhibitor of beta-cystathionase in Salmonella typhimurium. Biochim Biophys Acta. 1968 May;158(2):219–225. doi: 10.1016/0304-4165(68)90134-7. [DOI] [PubMed] [Google Scholar]
- Park Y. M., Stauffer G. V. DNA sequence of the metC gene and its flanking regions from Salmonella typhimurium LT2 and homology with the corresponding sequence of Escherichia coli. Mol Gen Genet. 1989 Mar;216(1):164–169. doi: 10.1007/BF00332246. [DOI] [PubMed] [Google Scholar]
- Ravanel S., Droux M., Douce R. Methionine biosynthesis in higher plants. I. Purification and characterization of cystathionine gamma-synthase from spinach chloroplasts. Arch Biochem Biophys. 1995 Jan 10;316(1):572–584. doi: 10.1006/abbi.1995.1077. [DOI] [PubMed] [Google Scholar]
- Ravanel S., Ruffet M. L., Douce R. Cloning of an Arabidopsis thaliana cDNA encoding cystathionine beta-lyase by functional complementation in Escherichia coli. Plant Mol Biol. 1995 Nov;29(4):875–882. doi: 10.1007/BF00041177. [DOI] [PubMed] [Google Scholar]
- Rolland N., Droux M., Lebrun M., Douce R. O-acetylserine(thiol)lyase from spinach (Spinacia oleracea L.) leaf: cDNA cloning, characterization, and overexpression in Escherichia coli of the chloroplast isoform. Arch Biochem Biophys. 1993 Jan;300(1):213–222. doi: 10.1006/abbi.1993.1030. [DOI] [PubMed] [Google Scholar]
- Saint-Girons I., Parsot C., Zakin M. M., Bârzu O., Cohen G. N. Methionine biosynthesis in Enterobacteriaceae: biochemical, regulatory, and evolutionary aspects. CRC Crit Rev Biochem. 1988;23 (Suppl 1):S1–42. doi: 10.3109/10409238809083374. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scopes R. K. Measurement of protein by spectrophotometry at 205 nm. Anal Biochem. 1974 May;59(1):277–282. doi: 10.1016/0003-2697(74)90034-7. [DOI] [PubMed] [Google Scholar]
- Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallsgrove R. M., Lea P. J., Miflin B. J. Intracellular localization of aspartate kinase and the enzymes of threonine and methionine biosynthesis in green leaves. Plant Physiol. 1983 Apr;71(4):780–784. doi: 10.1104/pp.71.4.780. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Heijne G., Steppuhn J., Herrmann R. G. Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem. 1989 Apr 1;180(3):535–545. doi: 10.1111/j.1432-1033.1989.tb14679.x. [DOI] [PubMed] [Google Scholar]