Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Dec 1;320(Pt 2):393–399. doi: 10.1042/bj3200393

Evidence for the presence of a large keratan sulphate proteoglycan in the human uterine cervix.

D C Fischer 1, A Henning 1, M Winkler 1, W Rath 1, H D Haubeck 1, H Greiling 1
PMCID: PMC1217944  PMID: 8973545

Abstract

Profound changes occur in the uterine cervix during pregnancy. In particular, the extracellular matrix of the connective tissue is remodelled extensively. To elucidate the mechanisms involved in this process, we have analysed the proteoglycan pattern in the human cervix from pregnant and non-pregnant women. Proteoglycans of the cervix tissue specimen were extracted with 4 M guanidine hydrochloride and precipitated with 80% ethanol. Purification of proteoglycans was performed by several chromatographic steps. Characterization of proteoglycans was done by SDS/PAGE before and after digestion with glycosaminoglycan-specific enzymes. Proteoglycans were detected by combined Alcian Blue/silver staining or, after blotting of biotin-labelled proteoglycans on to poly(vinylidene difluoride) membrane, with peroxidase-conjugated avidin or by the use of keratan sulphate- or decorin-specific monoclonal antibodies. In contrast with previous reports, where only chondroitin/dermatan sulphate proteoglycans have been found in the uterine cervix, we have shown in the present study the existence of a large keratan sulphate proteoglycan with an M(r) > 220,000 in cervix samples from non-pregnant and pregnant women. This proteoglycan showed a strong reaction with the keratan sulphate-specific monoclonal antibody 5D4 and could be degraded by keratanases. The size of the core protein of this keratan sulphate proteoglycan was estimated to be about M(r) 220,000.

Full Text

The Full Text of this article is available as a PDF (412.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aspden R. M. Collagen organisation in the cervix and its relation to mechanical function. Coll Relat Res. 1988 Mar;8(2):103–112. doi: 10.1016/s0174-173x(88)80022-0. [DOI] [PubMed] [Google Scholar]
  2. Brown G. M., Huckerby T. N., Morris H. G., Abram B. L., Nieduszynski I. A. Oligosaccharides derived from bovine articular cartilage keratan sulfates after keratanase II digestion: implications for keratan sulfate structural fingerprinting. Biochemistry. 1994 Apr 26;33(16):4836–4846. doi: 10.1021/bi00182a012. [DOI] [PubMed] [Google Scholar]
  3. Caterson B., Christner J. E., Baker J. R. Identification of a monoclonal antibody that specifically recognizes corneal and skeletal keratan sulfate. Monoclonal antibodies to cartilage proteoglycan. J Biol Chem. 1983 Jul 25;258(14):8848–8854. [PubMed] [Google Scholar]
  4. Farndale R. W., Sayers C. A., Barrett A. J. A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Connect Tissue Res. 1982;9(4):247–248. doi: 10.3109/03008208209160269. [DOI] [PubMed] [Google Scholar]
  5. Fischer D. C., Haubeck H. D., Eich K., Kolbe-Busch S., Stöcker G., Stuhlsatz H. W., Greiling H. A novel keratan sulphate domain preferentially expressed on the large aggregating proteoglycan from human articular cartilage is recognized by the monoclonal antibody 3D12/H7. Biochem J. 1996 Sep 15;318(Pt 3):1051–1056. doi: 10.1042/bj3181051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fischer D. C., Kolbe-Busch S., Stöcker G., Hoffmann A., Haubeck H. D. Development of enzyme immunoassays specific for keratan sulphate- and core-protein-epitopes of the large aggregating proteoglycan from human articular cartilage. Eur J Clin Chem Clin Biochem. 1994 Apr;32(4):285–291. doi: 10.1515/cclm.1994.32.4.285. [DOI] [PubMed] [Google Scholar]
  7. Forman A., Ulmsten U., Bányai J., Wingerup L., Uldbjerg N. Evidence for a local effect of intracervical prostaglandin E2-gel. Am J Obstet Gynecol. 1982 Aug 1;143(7):756–760. doi: 10.1016/0002-9378(82)90005-9. [DOI] [PubMed] [Google Scholar]
  8. Funderburgh J. L., Funderburgh M. L., Mann M. M., Conrad G. W. Unique glycosylation of three keratan sulfate proteoglycan isoforms. J Biol Chem. 1991 Aug 5;266(22):14226–14231. [PubMed] [Google Scholar]
  9. Greiling H. Structure and biological functions of keratan sulfate proteoglycans. EXS. 1994;70:101–122. doi: 10.1007/978-3-0348-7545-5_7. [DOI] [PubMed] [Google Scholar]
  10. Hascall V. C., Kimura J. H. Proteoglycans: isolation and characterization. Methods Enzymol. 1982;82(Pt A):769–800. doi: 10.1016/0076-6879(82)82102-2. [DOI] [PubMed] [Google Scholar]
  11. Heinegård D., Sommarin Y. Isolation and characterization of proteoglycans. Methods Enzymol. 1987;144:319–372. doi: 10.1016/0076-6879(87)44186-4. [DOI] [PubMed] [Google Scholar]
  12. Kjellén L., Lindahl U. Proteoglycans: structures and interactions. Annu Rev Biochem. 1991;60:443–475. doi: 10.1146/annurev.bi.60.070191.002303. [DOI] [PubMed] [Google Scholar]
  13. Lindblom A., Carlstedt I., Fransson L. A. Identification of the core proteins in proteoglycans synthesized by vascular endothelial cells. Biochem J. 1989 Jul 1;261(1):145–153. doi: 10.1042/bj2610145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Møller H. J., Heinegård D., Poulsen J. H. Combined alcian blue and silver staining of subnanogram quantities of proteoglycans and glycosaminoglycans in sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem. 1993 Feb 15;209(1):169–175. doi: 10.1006/abio.1993.1098. [DOI] [PubMed] [Google Scholar]
  15. Norman M., Ekman G., Malmström A. Changed proteoglycan metabolism in human cervix immediately after spontaneous vaginal delivery. Obstet Gynecol. 1993 Feb;81(2):217–223. [PubMed] [Google Scholar]
  16. Norman M., Ekman G., Ulmsten U., Barchan K., Malmström A. Proteoglycan metabolism in the connective tissue of pregnant and non-pregnant human cervix. An in vitro study. Biochem J. 1991 Apr 15;275(Pt 2):515–520. doi: 10.1042/bj2750515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Oike Y., Kimata K., Shinomura T., Nakazawa K., Suzuki S. Structural analysis of chick-embryo cartilage proteoglycan by selective degradation with chondroitin lyases (chondroitinases) and endo-beta-D-galactosidase (keratanase). Biochem J. 1980 Oct 1;191(1):193–207. doi: 10.1042/bj1910193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Osmers R., Rath W., Pflanz M. A., Kuhn W., Stuhlsatz H. W., Szeverényi M. Glycosaminoglycans in cervical connective tissue during pregnancy and parturition. Obstet Gynecol. 1993 Jan;81(1):88–92. [PubMed] [Google Scholar]
  19. Rath W., Osmers R., Adelmann-Grill B. C., Stuhlsatz H. W., Tschesche H., Szevérini M. Grundlagen der physiologischen und medikamentös induzierten Zervixreifung--Neuere morphologische und biochemische Befunde. Geburtshilfe Frauenheilkd. 1990 Sep;50(9):657–664. doi: 10.1055/s-2008-1026341. [DOI] [PubMed] [Google Scholar]
  20. Rath W., Osmers R., Stuhlsatz H. W., Adelmann-Grill B. C. Biochemische Grundlagen der Zervixreifung und Muttermundseröffnung. Z Geburtshilfe Perinatol. 1994 Oct-Dec;198(5-6):186–195. [PubMed] [Google Scholar]
  21. Ruoslahti E. Structure and biology of proteoglycans. Annu Rev Cell Biol. 1988;4:229–255. doi: 10.1146/annurev.cb.04.110188.001305. [DOI] [PubMed] [Google Scholar]
  22. Stöcker G., Fischer D. C. Isolation and characterization of proteoglycans from different tissues. J Chromatogr. 1990 Nov 23;521(2):311–324. doi: 10.1016/0021-9673(90)85055-z. [DOI] [PubMed] [Google Scholar]
  23. Stöcker G., Lückge J., Greiling H., Wagener C. Characterization of biotin-labeled proteoglycans by electrophoretic separation on minigels and blotting onto nylon membranes prior and after enzymatic digestion. Anal Biochem. 1989 Jun;179(2):245–250. doi: 10.1016/0003-2697(89)90123-1. [DOI] [PubMed] [Google Scholar]
  24. Stöcker G., Meyer H. E., Wagener C., Greiling H. Purification and N-terminal amino acid sequence of a chondroitin sulphate/dermatan sulphate proteoglycan isolated from intima/media preparations of human aorta. Biochem J. 1991 Mar 1;274(Pt 2):415–420. doi: 10.1042/bj2740415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tai G. H., Brown G. M., Morris H. G., Huckerby T. N., Nieduszynski I. A. Fucose content of keratan sulphates from bovine articular cartilage. Biochem J. 1991 Jan 15;273(Pt 2):307–310. doi: 10.1042/bj2730307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tai G. H., Huckerby T. N., Nieduszynski I. A. 600 MHz 1H NMR study of a fucose-containing heptasaccharide derived from a keratanase digestion of bovine articular cartilage keratan sulphate. Carbohydr Res. 1994 Mar 4;255:303–309. doi: 10.1016/s0008-6215(00)90987-x. [DOI] [PubMed] [Google Scholar]
  27. Uldbjerg N., Danielsen C. C. A study of the interaction in vitro between type I collagen and a small dermatan sulphate proteoglycan. Biochem J. 1988 May 1;251(3):643–648. doi: 10.1042/bj2510643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Uldbjerg N., Ekman G., Malmström A., Olsson K., Ulmsten U. Ripening of the human uterine cervix related to changes in collagen, glycosaminoglycans, and collagenolytic activity. Am J Obstet Gynecol. 1983 Nov 15;147(6):662–666. doi: 10.1016/0002-9378(83)90446-5. [DOI] [PubMed] [Google Scholar]
  29. Uldbjerg N., Malmström A., Ekman G., Sheehan J., Ulmsten U., Wingerup L. Isolation and characterization of dermatan sulphate proteoglycan from human uterine cervix. Biochem J. 1983 Feb 1;209(2):497–503. doi: 10.1042/bj2090497. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES