Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Dec 1;320(Pt 2):401–412.

Comparative studies on the 5-aminolaevulinic acid dehydratases from Pisum sativum, Escherichia coli and Saccharomyces cerevisiae.

N M Senior 1, K Brocklehurst 1, J B Cooper 1, S P Wood 1, P Erskine 1, P M Shoolingin-Jordan 1, P G Thomas 1, M J Warren 1
PMCID: PMC1217945  PMID: 8973546

Abstract

5-Aminolaevulinic acid dehydratase (ALAD) is an essential enzyme in most organisms, catalysing an inaugural step in the tetrapyrrole biosynthetic pathway, the Knorr-type condensation reaction of two molecules of 5-aminolaevulinic acid (ALA) to form the monopyrrole porphobilinogen. ALADs can be conveniently separated into two main groups: those requiring Zn2+ for activity (typified here by the enzymes from Escherichia coli and Saccharomyces cerevisiae, yeast) and those requiring Mg2+ (represented here by the enzyme from Pisum sativum, pea). Here we describe a detailed comparison of these two metal-dependent systems. Kinetically influential ionizations were identified by using pH-dependent kinetics. Groups with pKa values of approx. 7 and 10 (assigned to cysteine and lysine residues) were detected in the free enzyme and enzyme-substrate states of all three enzymes, and a further ionizable group with a pKa of approx. 8.5 (assigned to histidine) was found to be additionally important to the yeast enzyme. The importance of these residues was confirmed by using protein modifying reagents. Shifts in the pKa values of the pea and E. coli enzymes consequent on E-S complex formation suggest a change to a less hydrophobic micro-environment when substrate binds. Studies with inhibitors revealed that the three enzymes exhibit differential susceptibilities and, in the case of succinylacetone, this is reflected in Ki values that vary by three orders of magnitude. In addition, the crystallization of the yeast ALAD is described, raising the possibility of an X-ray-derived three-dimensional structure of this enzyme.

Full Text

The Full Text of this article is available as a PDF (576.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson P. M., Desnick R. J. Purification and properties of delta-aminolevulinate dehydrase from human erythrocytes. J Biol Chem. 1979 Aug 10;254(15):6924–6930. [PubMed] [Google Scholar]
  2. Baker T. A., Grossman A. D., Gross C. A. A gene regulating the heat shock response in Escherichia coli also affects proteolysis. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6779–6783. doi: 10.1073/pnas.81.21.6779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barnard G. F., Itoh R., Hohberger L. H., Shemin D. Mechanism of porphobilinogen synthase. Possible role of essential thiol groups. J Biol Chem. 1977 Dec 25;252(24):8965–8974. [PubMed] [Google Scholar]
  4. Boese Q. F., Spano A. J., Li J. M., Timko M. P. Aminolevulinic acid dehydratase in pea (Pisum sativum L.). Identification of an unusual metal-binding domain in the plant enzyme. J Biol Chem. 1991 Sep 15;266(26):17060–17066. [PubMed] [Google Scholar]
  5. Borralho L. M., Ortiz C. H., Panek A. D., Mattoon J. R. Purification of delta-aminolevulinate dehydratase from genetically engineered yeast. Yeast. 1990 Jul-Aug;6(4):319–330. doi: 10.1002/yea.320060405. [DOI] [PubMed] [Google Scholar]
  6. Brocklehurst K. A sound basis for pH-dependent kinetic studies on enzymes. Protein Eng. 1994 Mar;7(3):291–299. doi: 10.1093/protein/7.3.291. [DOI] [PubMed] [Google Scholar]
  7. Brocklehurst S. M., Topham C. M., Brocklehurst K. A general kinetic equation for multihydronic state reactions and rapid procedures for parameter evaluation. Biochem Soc Trans. 1990 Aug;18(4):598–600. doi: 10.1042/bst0180598. [DOI] [PubMed] [Google Scholar]
  8. Brumm P. J., Friedmann H. C. Succinylacetone pyrrole, a powerful inhibitor of vitamin B12 biosynthesis: effect of delta-aminolevulinic acid dehydratase. Biochem Biophys Res Commun. 1981 Oct 15;102(3):854–859. doi: 10.1016/0006-291x(81)91616-8. [DOI] [PubMed] [Google Scholar]
  9. Chandrika S. R., Kumar C. C., Padmanaban G. Characterization of protoporphyrin as the physiological regulatory of delta-aminolevulinate dehydratase in Neurospora crassa. Biochim Biophys Acta. 1980 Apr 30;607(2):331–338. doi: 10.1016/0005-2787(80)90085-4. [DOI] [PubMed] [Google Scholar]
  10. Dent A. J., Beyersmann D., Block C., Hasnain S. S. Two different zinc sites in bovine 5-aminolevulinate dehydratase distinguished by extended X-ray absorption fine structure. Biochemistry. 1990 Aug 28;29(34):7822–7828. doi: 10.1021/bi00486a007. [DOI] [PubMed] [Google Scholar]
  11. Doss M., von Tiepermann R., Schneider J. Acute hepatic porphyria syndrome with porphobilinogen synthase defect. Int J Biochem. 1980;12(5-6):823–826. doi: 10.1016/0020-711x(80)90170-6. [DOI] [PubMed] [Google Scholar]
  12. Doss M., von Tiepermann R., Schneider J., Schmid H. New type of hepatic porphyria with porphobilinogen synthase defect and intermittent acute clinical manifestation. Klin Wochenschr. 1979 Oct 15;57(20):1123–1127. doi: 10.1007/BF01481493. [DOI] [PubMed] [Google Scholar]
  13. Ebert P. S., Hess R. A., Frykholm B. C., Tschudy D. P. Succinylacetone, a potent inhibitor of heme biosynthesis: effect on cell growth, heme content and delta-aminolevulinic acid dehydratase activity of malignant murine erythroleukemia cells. Biochem Biophys Res Commun. 1979 Jun 27;88(4):1382–1390. doi: 10.1016/0006-291x(79)91133-1. [DOI] [PubMed] [Google Scholar]
  14. GIBSON K. D., NEUBERGER A., SCOTT J. J. The purification and properties of delta-aminolaevulic acid dehydrase. Biochem J. 1955 Dec;61(4):618–629. doi: 10.1042/bj0610618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Guo G. G., Gu M., Etlinger J. D. 240-kDa proteasome inhibitor (CF-2) is identical to delta-aminolevulinic acid dehydratase. J Biol Chem. 1994 Apr 29;269(17):12399–12402. [PubMed] [Google Scholar]
  16. Jaffe E. K., Abrams W. R., Kaempfen H. X., Harris K. A., Jr 5-Chlorolevulinate modification of porphobilinogen synthase identifies a potential role for the catalytic zinc. Biochemistry. 1992 Feb 25;31(7):2113–2123. doi: 10.1021/bi00122a032. [DOI] [PubMed] [Google Scholar]
  17. Jaffe E. K., Volin M., Myers C. B., Abrams W. R. 5-Chloro[1,4-13C]levulinic acid modification of mammalian and bacterial porphobilinogen synthase suggests an active site containing two Zn(II). Biochemistry. 1994 Sep 27;33(38):11554–11562. doi: 10.1021/bi00204a018. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K., Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol. 1973 Nov 15;80(4):575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
  19. Li J. M., Umanoff H., Proenca R., Russell C. S., Cosloy S. D. Cloning of the Escherichia coli K-12 hemB gene. J Bacteriol. 1988 Feb;170(2):1021–1025. doi: 10.1128/jb.170.2.1021-1025.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Liedgens W., Lütz C., Schneider H. A. Molecular properties of 5-aminolevulinic acid dehydratase from Spinacia oleracea. Eur J Biochem. 1983 Sep 1;135(1):75–79. doi: 10.1111/j.1432-1033.1983.tb07619.x. [DOI] [PubMed] [Google Scholar]
  21. MAUZERALL D., GRANICK S. The occurrence and determination of delta-amino-levulinic acid and porphobilinogen in urine. J Biol Chem. 1956 Mar;219(1):435–446. [PubMed] [Google Scholar]
  22. MacFerrin K. D., Terranova M. P., Schreiber S. L., Verdine G. L. Overproduction and dissection of proteins by the expression-cassette polymerase chain reaction. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1937–1941. doi: 10.1073/pnas.87.5.1937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mitchell L. W., Jaffe E. K. Porphobilinogen synthase from Escherichia coli is a Zn(II) metalloenzyme stimulated by Mg(II). Arch Biochem Biophys. 1993 Jan;300(1):169–177. doi: 10.1006/abbi.1993.1024. [DOI] [PubMed] [Google Scholar]
  24. Mitchell L. W., Volin M., Jaffe E. K. The phylogenetically conserved histidines of Escherichia coli porphobilinogen synthase are not required for catalysis. J Biol Chem. 1995 Oct 13;270(41):24054–24059. doi: 10.1074/jbc.270.41.24054. [DOI] [PubMed] [Google Scholar]
  25. Myers A. M., Crivellone M. D., Koerner T. J., Tzagoloff A. Characterization of the yeast HEM2 gene and transcriptional regulation of COX5 and COR1 by heme. J Biol Chem. 1987 Dec 15;262(35):16822–16829. [PubMed] [Google Scholar]
  26. Nandi D. L., Baker-Cohen K. F., Shemin D. Delta-aminolevulinic acid dehydratase of Rhodopseudomonas spheroides. J Biol Chem. 1968 Mar 25;243(6):1224–1230. [PubMed] [Google Scholar]
  27. Nandi D. L., Shemin D. -Aminolevulinic acid dehydratase of Rhodopseudomonas capsulata. Arch Biochem Biophys. 1973 Sep;158(1):305–311. doi: 10.1016/0003-9861(73)90626-7. [DOI] [PubMed] [Google Scholar]
  28. Nandi D. L., Shemin D. Delta-aminolevulinic acid dehydratase of Rhodopseudomonas spheroides. 3. Mechanism of porphobilinogen synthesis. J Biol Chem. 1968 Mar 25;243(6):1236–1242. [PubMed] [Google Scholar]
  29. Perlman K. L., Schömer U., Williams T. H., Perlman D. Microbial production of vitamin B12 antimetabolites. IV. Isolation and identification of 4-keto-5-amino-6-hydroxyhexanoic acid. J Antibiot (Tokyo) 1981 May;34(5):483–488. doi: 10.7164/antibiotics.34.483. [DOI] [PubMed] [Google Scholar]
  30. Roessner C. A., Spencer J. B., Ozaki S., Min C., Atshaves B. P., Nayar P., Anousis N., Stolowich N. J., Holderman M. T., Scott A. I. Overexpression in Escherichia coli of 12 vitamin B12 biosynthetic enzymes. Protein Expr Purif. 1995 Apr;6(2):155–163. doi: 10.1006/prep.1995.1019. [DOI] [PubMed] [Google Scholar]
  31. Rudnick G., Abeles R. H. Reaction mechanism and structure of the active site of proline racemase. Biochemistry. 1975 Oct 7;14(20):4515–4522. doi: 10.1021/bi00691a028. [DOI] [PubMed] [Google Scholar]
  32. Seehra J. S., Jordan P. M. 5-Aminolevulinic acid dehydratase: alkylation of an essential thiol in the bovine-liver enzyme by active-site-directed reagents. Eur J Biochem. 1981 Jan;113(3):435–446. doi: 10.1111/j.1432-1033.1981.tb05083.x. [DOI] [PubMed] [Google Scholar]
  33. Spencer P., Jordan P. M. Investigation of the nature of the two metal-binding sites in 5-aminolaevulinic acid dehydratase from Escherichia coli. Biochem J. 1994 Jun 1;300(Pt 2):373–381. doi: 10.1042/bj3000373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Spencer P., Jordan P. M. Purification and characterization of 5-aminolaevulinic acid dehydratase from Escherichia coli and a study of the reactive thiols at the metal-binding domain. Biochem J. 1993 Feb 15;290(Pt 1):279–287. doi: 10.1042/bj2900279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Topham C. M., Salih E., Frazao C., Kowlessur D., Overington J. P., Thomas M., Brocklehurst S. M., Patel M., Thomas E. W., Brocklehurst K. Structure-function relationships in the cysteine proteinases actinidin, papain and papaya proteinase omega. Three-dimensional structure of papaya proteinase omega deduced by knowledge-based modelling and active-centre characteristics determined by two-hydronic-state reactivity probe kinetics and kinetics of catalysis. Biochem J. 1991 Nov 15;280(Pt 1):79–92. doi: 10.1042/bj2800079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tsukamoto I., Yoshinaga T., Sano S. Evidence for histidine as another functional group of delta-aminolevulinic acid dehydratase from beef liver. Biochem Biophys Res Commun. 1975 Nov 3;67(1):294–300. doi: 10.1016/0006-291x(75)90315-0. [DOI] [PubMed] [Google Scholar]
  37. Tsukamoto I., Yoshinaga T., Sano S. The role of zinc with special reference to the essential thiol groups in delta-aminolevulinic acid dehydratase of bovine liver. Biochim Biophys Acta. 1979 Sep 12;570(1):167–178. doi: 10.1016/0005-2744(79)90211-0. [DOI] [PubMed] [Google Scholar]
  38. Vallee B. L., Auld D. S. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry. 1990 Jun 19;29(24):5647–5659. doi: 10.1021/bi00476a001. [DOI] [PubMed] [Google Scholar]
  39. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES