Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Dec 1;320(Pt 2):479–485. doi: 10.1042/bj3200479

Partial characterization of the C-terminal non-collagenous domain (NC1) of collagen type X.

R E Barber 1, A P Kwan 1
PMCID: PMC1217955  PMID: 8973556

Abstract

Collagen type X is composed of three identical alpha 1(X) chains of 59 kDa, each containing a triple-helical region of 45 kDa flanked by a short N-terminal sequence and a larger non-collagenous C-terminal (NC1) domain of approx. 15 kDa. Collagen type X molecules can associate via their C-termini to form a regular hexagonal lattice in vitro, which in vivo may provide a modified extracellular matrix for the events of endochondral ossification. The NC1 domain of chick collagen type X was isolated and purified from a highly purified bacterial collagenase digest of hypertrophic chondrocyte medium proteins. The structure and aggregation properties of the NC1 domain of collagen X were investigated, independently of the triple helix. A trimer, a dimer and a monomer of the individual alpha-chain NC1 polypeptides were identified from a bacterial collagenase digest of cartilage collagens using [14C]tyrosine labelling, N-chlorosuccinimide peptide mapping and N-terminal sequencing. The trimer (50 kDa) remained intact in Laemmli sample buffer unless boiled, upon which it dissociated into the dimer (38 kDa) and the monomer (20 kDa). The dimer persisted even after prolonged periods of heating or reduction with beta-mercaptoethanol, and in preparations obtained from chondrocyte cultures treated with beta-aminoproprionitrile, indicating the presence of non-reducible, non-lysine-derived, covalent cross-links. Hexamers of the individual C-termini were observed in rotary-shadowed preparations of purified NC1 domain, reflecting the ability of collagen type X to self-assemble via its C-termini under appropriate conditions.

Full Text

The Full Text of this article is available as a PDF (355.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aeschlimann D., Kaupp O., Paulsson M. Transglutaminase-catalyzed matrix cross-linking in differentiating cartilage: identification of osteonectin as a major glutaminyl substrate. J Cell Biol. 1995 May;129(3):881–892. doi: 10.1083/jcb.129.3.881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aigner T., Reichenberger E., Bertling W., Kirsch T., Stöss H., von der Mark K. Type X collagen expression in osteoarthritic and rheumatoid articular cartilage. Virchows Arch B Cell Pathol Incl Mol Pathol. 1993;63(4):205–211. doi: 10.1007/BF02899263. [DOI] [PubMed] [Google Scholar]
  3. Apte S. S., Seldin M. F., Hayashi M., Olsen B. R. Cloning of the human and mouse type X collagen genes and mapping of the mouse type X collagen gene to chromosome 10. Eur J Biochem. 1992 May 15;206(1):217–224. doi: 10.1111/j.1432-1033.1992.tb16919.x. [DOI] [PubMed] [Google Scholar]
  4. Brass A., Kadler K. E., Thomas J. T., Grant M. E., Boot-Handford R. P. The fibrillar collagens, collagen VIII, collagen X and the C1q complement proteins share a similar domain in their C-terminal non-collagenous regions. FEBS Lett. 1992 Jun 1;303(2-3):126–128. doi: 10.1016/0014-5793(92)80503-9. [DOI] [PubMed] [Google Scholar]
  5. Capasso O., Gionti E., Pontarelli G., Ambesi-Impiombato F. S., Nitsch L., Tajana G., Cancedda R. The culture of chick embryo chondrocytes and the control of their differentiated functions in vitro. I. Characterization of the chondrocyte-specific phenotypes. Exp Cell Res. 1982 Nov;142(1):197–206. doi: 10.1016/0014-4827(82)90423-2. [DOI] [PubMed] [Google Scholar]
  6. Castagnola P., Moro G., Descalzi-Cancedda F., Cancedda R. Type X collagen synthesis during in vitro development of chick embryo tibial chondrocytes. J Cell Biol. 1986 Jun;102(6):2310–2317. doi: 10.1083/jcb.102.6.2310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chan D., Cole W. G., Rogers J. G., Bateman J. F. Type X collagen multimer assembly in vitro is prevented by a Gly618 to Val mutation in the alpha 1(X) NC1 domain resulting in Schmid metaphyseal chondrodysplasia. J Biol Chem. 1995 Mar 3;270(9):4558–4562. doi: 10.1074/jbc.270.9.4558. [DOI] [PubMed] [Google Scholar]
  8. Dharmavaram R. M., Elberson M. A., Peng M., Kirson L. A., Kelley T. E., Jimenez S. A. Identification of a mutation in type X collagen in a family with Schmid metaphyseal chondrodysplasia. Hum Mol Genet. 1994 Mar;3(3):507–509. doi: 10.1093/hmg/3.3.507. [DOI] [PubMed] [Google Scholar]
  9. Gibson G. J., Flint M. H. Type X collagen synthesis by chick sternal cartilage and its relationship to endochondral development. J Cell Biol. 1985 Jul;101(1):277–284. doi: 10.1083/jcb.101.1.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grant W. T., Sussman M. D., Balian G. A disulfide-bonded short chain collagen synthesized by degenerative and calcifying zones of bovine growth plate cartilage. J Biol Chem. 1985 Mar 25;260(6):3798–3803. [PubMed] [Google Scholar]
  11. Grant W. T., Wang G. J., Balian G. Type X collagen synthesis during endochondral ossification in fracture repair. J Biol Chem. 1987 Jul 15;262(20):9844–9849. [PubMed] [Google Scholar]
  12. Hoyland J. A., Thomas J. T., Donn R., Marriott A., Ayad S., Boot-Handford R. P., Grant M. E., Freemont A. J. Distribution of type X collagen mRNA in normal and osteoarthritic human cartilage. Bone Miner. 1991 Nov;15(2):151–163. doi: 10.1016/0169-6009(91)90005-k. [DOI] [PubMed] [Google Scholar]
  13. Iyama K., Ninomiya Y., Olsen B. R., Linsenmayer T. F., Trelstad R. L., Hayashi M. Spatiotemporal pattern of type X collagen gene expression and collagen deposition in embryonic chick vertebrae undergoing endochondral ossification. Anat Rec. 1991 Apr;229(4):462–472. doi: 10.1002/ar.1092290405. [DOI] [PubMed] [Google Scholar]
  14. Jimenez S. A., Yankowski R., Reginato A. M. Quantitative analysis of type X-collagen biosynthesis by embryonic-chick sternal cartilage. Biochem J. 1986 Jan 15;233(2):357–367. doi: 10.1042/bj2330357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kielty C. M., Kwan A. P., Holmes D. F., Schor S. L., Grant M. E. Type X collagen, a product of hypertrophic chondrocytes. Biochem J. 1985 Apr 15;227(2):545–554. doi: 10.1042/bj2270545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kwan A. P., Cummings C. E., Chapman J. A., Grant M. E. Macromolecular organization of chicken type X collagen in vitro. J Cell Biol. 1991 Aug;114(3):597–604. doi: 10.1083/jcb.114.3.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kwan A. P., Freemont A. J., Grant M. E. Immunoperoxidase localization of type X collagen in chick tibiae. Biosci Rep. 1986 Feb;6(2):155–162. doi: 10.1007/BF01115001. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Lischwe M. A., Ochs D. A new method for partial peptide mapping using N-chlorosuccinimide/urea and peptide silver staining in sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem. 1982 Dec;127(2):453–457. doi: 10.1016/0003-2697(82)90203-2. [DOI] [PubMed] [Google Scholar]
  20. LuValle P., Daniels K., Hay E. D., Olsen B. R. Type X collagen is transcriptionally activated and specifically localized during sternal cartilage maturation. Matrix. 1992 Nov;12(5):404–413. doi: 10.1016/s0934-8832(11)80037-5. [DOI] [PubMed] [Google Scholar]
  21. LuValle P., Ninomiya Y., Rosenblum N. D., Olsen B. R. The type X collagen gene. Intron sequences split the 5'-untranslated region and separate the coding regions for the non-collagenous amino-terminal and triple-helical domains. J Biol Chem. 1988 Dec 5;263(34):18378–18385. [PubMed] [Google Scholar]
  22. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  23. McIntosh I., Abbott M. H., Warman M. L., Olsen B. R., Francomano C. A. Additional mutations of type X collagen confirm COL10A1 as the Schmid metaphyseal chondrodysplasia locus. Hum Mol Genet. 1994 Feb;3(2):303–307. doi: 10.1093/hmg/3.2.303. [DOI] [PubMed] [Google Scholar]
  24. Mould A. P., Holmes D. F., Kadler K. E., Chapman J. A. Mica sandwich technique for preparing macromolecules for rotary shadowing. J Ultrastruct Res. 1985 Apr;91(1):66–76. doi: 10.1016/0889-1605(85)90077-1. [DOI] [PubMed] [Google Scholar]
  25. Muragaki Y., Jacenko O., Apte S., Mattei M. G., Ninomiya Y., Olsen B. R. The alpha 2(VIII) collagen gene. A novel member of the short chain collagen family located on the human chromosome 1. J Biol Chem. 1991 Apr 25;266(12):7721–7727. [PubMed] [Google Scholar]
  26. Pacifici M., Golden E. B., Oshima O., Shapiro I. M., Leboy P. S., Adams S. L. Hypertrophic chondrocytes. The terminal stage of differentiation in the chondrogenic cell lineage? Ann N Y Acad Sci. 1990;599:45–57. doi: 10.1111/j.1749-6632.1990.tb42363.x. [DOI] [PubMed] [Google Scholar]
  27. Sakura S., Fujimoto D. Absorption and fluorescence study of tyrosine-derived crosslinking amino acids from collagen. Photochem Photobiol. 1984 Dec;40(6):731–734. doi: 10.1111/j.1751-1097.1984.tb04644.x. [DOI] [PubMed] [Google Scholar]
  28. Sawada H., Konomi H., Hirosawa K. Characterization of the collagen in the hexagonal lattice of Descemet's membrane: its relation to type VIII collagen. J Cell Biol. 1990 Jan;110(1):219–227. doi: 10.1083/jcb.110.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schmid T. M., Conrad H. E. A unique low molecular weight collagen secreted by cultured chick embryo chondrocytes. J Biol Chem. 1982 Oct 25;257(20):12444–12450. [PubMed] [Google Scholar]
  30. Schmid T. M., Conrad H. E. Metabolism of low molecular weight collagen by chondrocytes obtained from histologically distinct zones of the chick embryo tibiotarsus. J Biol Chem. 1982 Oct 25;257(20):12451–12457. [PubMed] [Google Scholar]
  31. Schmid T. M., Linsenmayer T. F. A short chain (pro)collagen from aged endochondral chondrocytes. Biochemical characterization. J Biol Chem. 1983 Aug 10;258(15):9504–9509. [PubMed] [Google Scholar]
  32. Schmid T. M., Linsenmayer T. F. Denaturation-renaturation properties of two molecular forms of short-chain cartilage collagen. Biochemistry. 1984 Jan 31;23(3):553–558. doi: 10.1021/bi00298a024. [DOI] [PubMed] [Google Scholar]
  33. Schmid T. M., Linsenmayer T. F. Developmental acquisition of type X collagen in the embryonic chick tibiotarsus. Dev Biol. 1985 Feb;107(2):373–381. doi: 10.1016/0012-1606(85)90319-7. [DOI] [PubMed] [Google Scholar]
  34. Schmid T. M., Linsenmayer T. F. Immunoelectron microscopy of type X collagen: supramolecular forms within embryonic chick cartilage. Dev Biol. 1990 Mar;138(1):53–62. doi: 10.1016/0012-1606(90)90176-j. [DOI] [PubMed] [Google Scholar]
  35. Thomas J. T., Cresswell C. J., Rash B., Nicolai H., Jones T., Solomon E., Grant M. E., Boot-Handford R. P. The human collagen X gene. Complete primary translated sequence and chromosomal localization. Biochem J. 1991 Dec 15;280(Pt 3):617–623. doi: 10.1042/bj2800617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Thomas J. T., Kwan A. P., Grant M. E., Boot-Handford R. P. Isolation of cDNAs encoding the complete sequence of bovine type X collagen. Evidence for the condensed nature of mammalian type X collagen genes. Biochem J. 1991 Jan 1;273(Pt 1):141–148. doi: 10.1042/bj2730141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Timpl R., Wiedemann H., van Delden V., Furthmayr H., Kühn K. A network model for the organization of type IV collagen molecules in basement membranes. Eur J Biochem. 1981 Nov;120(2):203–211. doi: 10.1111/j.1432-1033.1981.tb05690.x. [DOI] [PubMed] [Google Scholar]
  38. Wallis G. A., Rash B., Sweetman W. A., Thomas J. T., Super M., Evans G., Grant M. E., Boot-Handford R. P. Amino acid substitutions of conserved residues in the carboxyl-terminal domain of the alpha 1(X) chain of type X collagen occur in two unrelated families with metaphyseal chondrodysplasia type Schmid. Am J Hum Genet. 1994 Feb;54(2):169–178. [PMC free article] [PubMed] [Google Scholar]
  39. Warman M. L., Abbott M., Apte S. S., Hefferon T., McIntosh I., Cohn D. H., Hecht J. T., Olsen B. R., Francomano C. A. A type X collagen mutation causes Schmid metaphyseal chondrodysplasia. Nat Genet. 1993 Sep;5(1):79–82. doi: 10.1038/ng0993-79. [DOI] [PubMed] [Google Scholar]
  40. Yamaguchi N., Benya P. D., van der Rest M., Ninomiya Y. The cloning and sequencing of alpha 1(VIII) collagen cDNAs demonstrate that type VIII collagen is a short chain collagen and contains triple-helical and carboxyl-terminal non-triple-helical domains similar to those of type X collagen. J Biol Chem. 1989 Sep 25;264(27):16022–16029. [PubMed] [Google Scholar]
  41. von der Mark K., Kirsch T., Nerlich A., Kuss A., Weseloh G., Glückert K., Stöss H. Type X collagen synthesis in human osteoarthritic cartilage. Indication of chondrocyte hypertrophy. Arthritis Rheum. 1992 Jul;35(7):806–811. doi: 10.1002/art.1780350715. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES