Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Dec 1;320(Pt 2):531–540. doi: 10.1042/bj3200531

Structure-activity relationships for chemical and glutathione S-transferase-catalysed glutathione conjugation reactions of a series of 2-substituted 1-chloro-4-nitrobenzenes.

E M Van der Aar 1, T Bouwman 1, J N Commandeur 1, N P Vermeulen 1
PMCID: PMC1217961  PMID: 8973562

Abstract

Glutathione S-transferases (GSTs) constitute an important class of phase II (de)toxifying enzymes, catalysing the conjugation of glutathione (GSH) with electrophilic compounds. In the present study, Km, kcat and kcat/Km values for the rat GST 1-1-, 3-3-, 4-4- and 7-7-catalysed conjugation reactions between GSH and a series of 10 different 2-substituted 1-chloro-4-nitrobenzenes, and the second-order rate constants (ks) of the corresponding base-catalysed reactions, were correlated with nine classical physicochemical parameters (electronic, steric and lipophilic) of the substituents and with 16 computer-calculated molecular parameters of the substrates and of the corresponding Meisenheimer complexes with MeS- as a model nucleophile for GS- (charge distributions and several energy values), giving structure-activity relationships. On the basis of an identical dependence of the base-catalysed as well as the GST 1-1- and GST 7-7-catalysed reactions on electronic parameters (among others, Hammett substituent constant sigma p and charge on p-nitro substituents), and the finding that the corresponding reactions catalysed by GSTs 3-3 and 4-4 depend to a significantly lesser extent on these parameters, it was concluded that the Mu-class GST isoenzymes have a rate-determining transition state in the conjugation reaction between 2-substituted 1-chloro-4-nitrobenzenes and GSH which is different from that of the other two GSTs. Several alternative rate-limiting transition states for GST 3-3 and 4-4 are discussed. Furthermore, based on the obtained structure-activity relationships, it was possible to predict the kcat/Km values of the four GST isoenzymes and the ks of the base-catalysed GSH conjugation of 1-chloro-4-nitrobenzene.

Full Text

The Full Text of this article is available as a PDF (523.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed A. E., Anders M. W. Metabolism of dihalomethanes to formaldehyde and inorganic halide--II. Studies on the mechanism of the reaction. Biochem Pharmacol. 1978;27(16):2021–2025. doi: 10.1016/0006-2952(78)90061-8. [DOI] [PubMed] [Google Scholar]
  2. Armstrong R. N. Glutathione S-transferases: reaction mechanism, structure, and function. Chem Res Toxicol. 1991 Mar-Apr;4(2):131–140. doi: 10.1021/tx00020a001. [DOI] [PubMed] [Google Scholar]
  3. Bogaards J. J., van Ommen B., van Bladeren P. J. An improved method for the separation and quantification of glutathione S-transferase subunits in rat tissue using high-performance liquid chromatography. J Chromatogr. 1989 Jul 19;474(2):435–440. doi: 10.1016/s0021-9673(01)93940-8. [DOI] [PubMed] [Google Scholar]
  4. Chen W. J., Graminski G. F., Armstrong R. N. Dissection of the catalytic mechanism of isozyme 4-4 of glutathione S-transferase with alternative substrates. Biochemistry. 1988 Jan 26;27(2):647–654. doi: 10.1021/bi00402a023. [DOI] [PubMed] [Google Scholar]
  5. Commandeur J. N., Stijntjes G. J., Vermeulen N. P. Enzymes and transport systems involved in the formation and disposition of glutathione S-conjugates. Role in bioactivation and detoxication mechanisms of xenobiotics. Pharmacol Rev. 1995 Jun;47(2):271–330. [PubMed] [Google Scholar]
  6. Danielson U. H., Mannervik B. Kinetic independence of the subunits of cytosolic glutathione transferase from the rat. Biochem J. 1985 Oct 15;231(2):263–267. doi: 10.1042/bj2310263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ding G. J., Ding V. D., Rodkey J. A., Bennett C. D., Lu A. Y., Pickett C. B. Rat liver glutathione S-transferases. DNA sequence analysis of a Yb2 cDNA clone and regulation of the Yb1 and Yb2 mRNAs by phenobarbital. J Biol Chem. 1986 Jun 15;261(17):7952–7957. [PubMed] [Google Scholar]
  8. Dirr H., Reinemer P., Huber R. X-ray crystal structures of cytosolic glutathione S-transferases. Implications for protein architecture, substrate recognition and catalytic function. Eur J Biochem. 1994 Mar 15;220(3):645–661. doi: 10.1111/j.1432-1033.1994.tb18666.x. [DOI] [PubMed] [Google Scholar]
  9. Jernström B., Babson J. R., Moldéus P., Holmgren A., Reed D. J. Glutathione conjugation and DNA-binding of (+/-)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene and (+/-)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene in isolated rat hepatocytes. Carcinogenesis. 1982;3(8):861–866. doi: 10.1093/carcin/3.8.861. [DOI] [PubMed] [Google Scholar]
  10. Johnson W. W., Liu S., Ji X., Gilliland G. L., Armstrong R. N. Tyrosine 115 participates both in chemical and physical steps of the catalytic mechanism of a glutathione S-transferase. J Biol Chem. 1993 Jun 5;268(16):11508–11511. [PubMed] [Google Scholar]
  11. Keen J. H., Habig W. H., Jakoby W. B. Mechanism for the several activities of the glutathione S-transferases. J Biol Chem. 1976 Oct 25;251(20):6183–6188. [PubMed] [Google Scholar]
  12. Kerklaan P. R., Bouter S., te Koppele J. M., Vermeulen N. P., van Bladeren P. J., Mohn G. R. Mutagenicity of halogenated and other substituted dinitrobenzenes in Salmonella typhimurium TA100 and derivatives deficient in glutathione (TA100/GSH-) and nitroreductase (TA100NR). Mutat Res. 1987 Feb;176(2):171–178. doi: 10.1016/0027-5107(87)90047-9. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Lai H. C., Li N., Weiss M. J., Reddy C. C., Tu C. P. The nucleotide sequence of a rat liver glutathione S-transferase subunit cDNA clone. J Biol Chem. 1984 May 10;259(9):5536–5542. [PubMed] [Google Scholar]
  15. Mannervik B., Alin P., Guthenberg C., Jensson H., Tahir M. K., Warholm M., Jörnvall H. Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7202–7206. doi: 10.1073/pnas.82.21.7202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mannervik B., Danielson U. H. Glutathione transferases--structure and catalytic activity. CRC Crit Rev Biochem. 1988;23(3):283–337. doi: 10.3109/10409238809088226. [DOI] [PubMed] [Google Scholar]
  17. Meyer D. J., Coles B., Pemble S. E., Gilmore K. S., Fraser G. M., Ketterer B. Theta, a new class of glutathione transferases purified from rat and man. Biochem J. 1991 Mar 1;274(Pt 2):409–414. doi: 10.1042/bj2740409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Okuda A., Sakai M., Muramatsu M. The structure of the rat glutathione S-transferase P gene and related pseudogenes. J Biol Chem. 1987 Mar 15;262(8):3858–3863. [PubMed] [Google Scholar]
  19. Ploemen J. H., Bogaards J. J., Veldink G. A., van Ommen B., Jansen D. H., van Bladeren P. J. Isoenzyme selective irreversible inhibition of rat and human glutathione S-transferases by ethacrynic acid and two brominated derivatives. Biochem Pharmacol. 1993 Feb 9;45(3):633–639. doi: 10.1016/0006-2952(93)90137-l. [DOI] [PubMed] [Google Scholar]
  20. Ploemen J. H., Johnson W. W., Jespersen S., Vanderwall D., van Ommen B., van der Greef J., van Bladeren P. J., Armstrong R. N. Active-site tyrosyl residues are targets in the irreversible inhibition of a class Mu glutathione transferase by 2-(S-glutathionyl)-3,5,6-trichloro-1,4-benzoquinone. J Biol Chem. 1994 Oct 28;269(43):26890–26897. [PubMed] [Google Scholar]
  21. Ploemen J. H., Wormhoudt L. W., van Ommen B., Commandeur J. N., Vermeulen N. P., van Bladeren P. J. Polymorphism in the glutathione conjugation activity of human erythrocytes towards ethylene dibromide and 1,2-epoxy-3-(p-nitrophenoxy)-propane. Biochim Biophys Acta. 1995 Apr 13;1243(3):469–476. doi: 10.1016/0304-4165(94)00175-w. [DOI] [PubMed] [Google Scholar]
  22. Reinemer P., Dirr H. W., Ladenstein R., Schäffer J., Gallay O., Huber R. The three-dimensional structure of class pi glutathione S-transferase in complex with glutathione sulfonate at 2.3 A resolution. EMBO J. 1991 Aug;10(8):1997–2005. doi: 10.1002/j.1460-2075.1991.tb07729.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rietjens I. M., Soffers A. E., Hooiveld G. J., Veeger C., Vervoort J. Quantitative structure-activity relationships based on computer calculated parameters for the overall rate of glutathione S-transferase catalyzed conjugation of a series of fluoronitrobenzenes. Chem Res Toxicol. 1995 Jun;8(4):481–488. doi: 10.1021/tx00046a001. [DOI] [PubMed] [Google Scholar]
  24. Sinning I., Kleywegt G. J., Cowan S. W., Reinemer P., Dirr H. W., Huber R., Gilliland G. L., Armstrong R. N., Ji X., Board P. G. Structure determination and refinement of human alpha class glutathione transferase A1-1, and a comparison with the Mu and Pi class enzymes. J Mol Biol. 1993 Jul 5;232(1):192–212. doi: 10.1006/jmbi.1993.1376. [DOI] [PubMed] [Google Scholar]
  25. Vos R. M., Snoek M. C., van Berkel W. J., Müller F., van Bladeren P. J. Differential induction of rat hepatic glutathione S-transferase isoenzymes by hexachlorobenzene and benzyl isothiocyanate. Comparison with induction by phenobarbital and 3-methylcholanthrene. Biochem Pharmacol. 1988 Mar 15;37(6):1077–1082. doi: 10.1016/0006-2952(88)90513-8. [DOI] [PubMed] [Google Scholar]
  26. de Groot M. J., Vermeulen N. P., Mullenders D. L., Donné-Op den Kelder G. M. A homology model for rat mu class glutathione S-transferase 4-4. Chem Res Toxicol. 1996 Jan-Feb;9(1):28–40. doi: 10.1021/tx950082i. [DOI] [PubMed] [Google Scholar]
  27. van der Aar E. M., Buikema D., Commandeur J. N., te Koppele J. M., van Ommen B., van Bladeren P. J., Vermeulen N. P. Enzyme kinetics and substrate selectivities of rat glutathione S-transferase isoenzymes towards a series of new 2-substituted 1-chloro-4-nitrobenzenes. Xenobiotica. 1996 Feb;26(2):143–155. doi: 10.3109/00498259609046696. [DOI] [PubMed] [Google Scholar]
  28. van der Aar E. M., de Groot M. J., Bijloo G. J., van der Goot H., Vermeulen N. P. Structure-activity relationships for the glutathione conjugation of 2-substituted 1-chloro-4-nitrobenzenes by rat glutathione S-transferase 4-4. Chem Res Toxicol. 1996 Mar;9(2):527–534. doi: 10.1021/tx9501391. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES