Skip to main content
Journal of Zhejiang University (Medical Sciences) logoLink to Journal of Zhejiang University (Medical Sciences)
. 2025 May 25;54(3):411–421. [Article in Chinese] doi: 10.3724/zdxbyxb-2024-0216

早产儿视网膜病变治疗药物研究进展

Advances in pharmacological research for retinopathy of prematurity

XIE Yanxi 1,2, ZHENG Suilian 1,✉,, YANG Hui 1,✉,
Editor: ? 敏沈?
PMCID: PMC12179682  PMID: 40394926

Abstract

Retinopathy of prematurity (ROP) is a proliferative retinal vascular disease that threatens the vision of premature infants. Various novel drugs have demonstrated therapeutic potential for ROP by targeting signaling pathways associated with vascular endothelial growth factor (VEGF) [such as PI3K/AKT, hypoxia-inducible factor (HIF)-1α/VEGF], oxidative stress, tumor necrosis factor (TNF)-α, and Notch pathways. Propranolol, insulin-like growth factor-1, and celecoxib attenuate pathological neovascularization via the PI3K/Akt signaling pathway. Tripterine and melatonin inhibit retinal neovascularization by modulating the HIF-1α/VEGF signaling axis. Adiponectin mitigates the damage caused by oxidative stress and preserves endothelial function by enhancing endothelial nitric oxide synthase activity. Omega-3 polyunsaturated fatty acids suppress TNF-α-mediated inflammatory responses, modulate retinal development and angiogenesis, and reduce retinal neovascular lesions. DAPT, a γ-secretase inhibitor, blocks Notch signaling to suppress abnormal vascular proliferation. These agents exhibit synergistic multi-pathway anti-angiogenic effects in preclinical models and early-phase clinical trials, offering critical insights for advancing drug development and clinical translation in ROP management.

Keywords: Retinopathy of prematurity, Vascular endothelial growth factor, Oxidative stress, Tumor necrosis factor-α, Notch, Drug, Review


ROP是一种发生于早产儿的增殖性视网膜病变。在出生体重低于2 kg的早产儿中,ROP的典型表现为视网膜血管化延迟伴病理?新生血管形成,?终可导致患儿因纤维血管增殖?牵拉?致视网膜脱?1。早发现、早治疗是防止ROP致盲的首要原则?早期治疗方法包括玻璃体腔注射抗VEGF药物和视网膜?光光凝术。尽管多数ROP患儿在早期干预后预后可改善,但仍有一定比例的患儿病情持续进展2,需要进?步行巩膜环扎术和玻璃体切除术等手术治疗??

目前,临床应用于ROP的治疗药物,如贝伐单抗?雷珠单抗?阿柏西普?康柏西普和哌加他尼钠等,均为靶向VEGF的玻璃体腔注射抗VEGF药物。与视网膜激光光凝术比较,抗VEGF药物具有以下优点:迅速缓解后极部视网膜血管的迂曲和扩张;促进外周视网膜血管的持续发育,避免视野损伤;治疗耗时少;高度近视风险?3。尽管玻璃体腔注射抗VEGF药物在ROP的治疗中发挥不可或缺的作用,但其?限?不可忽视?如玻璃体腔注射抗VEGF药物的疗效会随时间消?,部分患儿需要多次注射或?光治疗,也可能出现远期再?活?此外,有研究报道玻璃体腔注射抗VEGF药物可引发眼内炎、眼内出?和视网膜脱离等眼部不良反应,但其对肾、肺、脑等器官发育的影响尚不明确4?

ROP的发病机制涉及多条与VEGF相关的信号?路,包括PI3K/Akt信号通路、HIF-1α/VEGF信号通路、VEGF下游的血管生成信号?路,以及氧化应?通路、TNF-α信号通路和Notch信号通路等?本文将系统阐述ROP关键信号通路,同时分析具有转化潜力的临床前??药物,探讨潜在治疗靶点,旨在为ROP防治新策略的研究方向提供参???

1. 作用于血管内皮生长因子相关信号?路药物

1.1. PI3K/Akt信号通路相关药物

PI3K是一种具有蛋白激酶和磷脂?酶双重活性的细胞质激酶?Akt是一种丝氨酸/苏氨酸蛋白激酶,是PI3K下游的关键蛋白?PI3K/Akt是细胞内信号转导通路,能够响应细胞外刺激信号,进而调控细胞的代谢活动、增殖分化?存活凋亡,以及?管生成?PI3K/Akt信号通路通过多种途径促进VEGF的表达和分泌,刺??管生?5-6。深入探究PI3K/Akt信号通路的关键分子机制,可揭示ROP病理性血管生成的核心驱动因素,为靶向药物筛?开发提供方向??

1.1.1. 普萘洛尔

普萘洛尔是一种?受性良好的非?择?β-肾上腺素受体阻滞剂,能有效降低VEGF的浓度以及人脐静脉内皮细胞的活?和迁移速度7,并通过下调PI3K/Akt/VEGF信号通路相关蛋白的表达诱导血管瘤细胞消??8。在体重低于1.25 kg的早产儿中,ROP的发生与婴儿?管瘤相关,这两种疾病在发育过程中有相似的微血管增生表现,即出生后迟滞,然后快速增长,?后?渐消??9,且发病机制均涉及VEGF、IGF-1水平升高?β-肾上腺素能系统的??10。鉴于普萘洛尔促进血管瘤消??的疗效已获临床验证,该药物有望成为治疗ROP的创新?干预方案??

在高度模拟ROP核心病理特征的OIR小鼠中,普萘洛尔眼用溶液可减少VEGF和IGF-1表达,并阻断信号转导及转录激活蛋?3的磷酸化11,也可以减少视网膜血管生成并改善?-视网膜屏障功能障?12。此外,普萘洛尔可?过降低眼内VEGF浓度、增加内源?可溶?VEGF受体-1表达改善视网膜血管损?13?

?项临床试验对52例胎龄为23~31周的ROP高危早产儿进行口服普萘洛尔治疗,结果发现口服普萘洛尔可有效缓解ROP进展14。另?项研究发现在ROP第二阶段初期口服普萘洛尔疗效?明显,且小剂量(0.5 mg·kg-1·d-1)与大剂量(2 mg·kg-1·d-1)疗效相?15。Makhoul?16在一项随机?双盲前瞻?研究中纳入20例胎龄为24~28周的ROP高危早产儿,分别口服普萘洛尔或安慰剂,治疗持?4周或至ROP缓解,未观察到口服普萘洛尔患儿出现明显不良反应?Bastug?17通过长期随访发现,接?0.5 mg·kg-1·6 h-1口服或?过鼻胃管给予普萘洛尔早产儿身心发育与未治疗组比较无明显差异。然而,全身摄入非?择?β受体阻滞剂仍有一定潜在风险?研究发现,尽管病情稳定的新生儿对普萘洛尔的耐受性良好(生化指标、血流动力学参数和呼吸参数稳定),但临床情况不稳定的新生儿会出现心动过缓、呼吸暂停和低血压等严重不良反应,须中断治疗18。鉴于全身给药的安全性问题,有研究进?步探索了?部滴眼给药的治疗方案,结果发?0.1%普萘洛尔滴眼液?受性好但疗效有?19,??0.2%普萘洛尔滴眼液可有效延缓ROP预期进展20。综上,虽然目前已有研究显示普萘洛尔能够延缓早产儿ROP的进展,但其具体的给药方式?剂量及疗程仍需大量临床验证?

1.1.2. IGF-1

IGF-1是一种主要由肝脏合成并分泌的生长因子,?过体循环运输至视网膜,是视网膜?管发育的关键调控因子21。研究表明,IGF-1通过?活PI3K/Akt信号通路促进Akt磷酸化,从?有效保护内皮细胞免于凋亡,而敲除IGF-1受体基因则会导致Akt磷酸化水平下降,加剧内皮细胞凋亡,这?过程揭示了IGF-1在维持内皮细胞存活和促进?管生成中的关键作?22-23。Zheng?24发现IGF-1能够?活PI3K/Akt通路,在体内和体外保护hRPE免受损伤。因此,尽早提高早产儿血液中的IGF-1浓度或许能有效防治ROP的发生发?25?

Vanhaesebrouck?26在OIR模型中发现,大窝别(14~16只)小鼠比小窝别?4~9只)小鼠体重轻,?浆IGF-1水平也更低,且OIR的发生率及病变严重程度增加??过内源性或外源性补充IGF-1可有效增加小鼠体重,并降低OIR发生率?幼鼠皮下注射IGF-1后,?清IGF-1水平升高,促进了视网膜血管发?27。临床研究发现,通过口服或静脉输液将IGF-I提高到正常水平可能会降低ROP发生?28。研究显示,通过持续静脉输注IGF-1可有效提高早产儿?浆中的IGF-1浓度,且早产儿对IGF-1的全身补充治疗表现出良好的?受性,无明显不良反?29。一项试验纳入了19例ROP高危早产儿,其中9例接受IGF-1治疗?10例接受标准新生儿护理,结果显示IGF-1治疗组患儿血清IGF-1浓度升高并达到目标水平,且未观察到ROP发生,?对照组中有1例患儿发生ROP30,表明提高血浆IGF-1水平?定程度上可减少ROP发生,具有早期预防作用?但是,Ley?31纳入121例胎龄介?23?0天到27?6天的ROP高危早产儿,其中IGF-1组平均治疗时间为23.8 d,结果发现IGF-1治疗与ROP发生无关。因此,IGF-1预防早产儿ROP的有效?和安全性还?要更多临床研究加以证实??

1.1.3. 塞来昔布

塞来昔布是一种环氧合?2选择性抑制剂,具有与非?择性非甾体抗炎药相当的疗效。诱导型异构体环氧合?2在炎症条件和细胞因子启动下被?活,通过促进前列腺素合成调控?管生?32,表现出抗炎、抗肿瘤和抗?管生成的特??33?

在眼科领域,塞来昔布可以抑制角膜、视网膜和脉络膜新生?管中的VEGF表达,有效减少血管生?34。在hRPE中,塞来昔布以剂量依赖的方式抑制细胞生长,并通过抑制PI3K/Akt信号通路下调VEGF表达35。此外,研究发现使用塞来昔布治疗后,OIR小鼠视网膜新生血管簇减少36。进?步研究表明,玻璃体内注射不同浓度的塞来昔布对视网膜新生血管的抑制作用呈现剂量依赖性,随着注射药物浓度升高,新生血管抑制程度增加,同时视网膜组织结构的改善也随之增?37。上述结果表明,塞来昔布可抑制眼部视网膜新生?管增生,可能是治疗视网膜增生性疾病的新?择?

1.2. HIF-1α/VEGF信号通路相关药物

HIF-1是细胞在缺氧条件下产生的具有转录活?的核蛋白,作为基因转录的生理调节因子,在缺氧调节中起着关键作用。HIF-1α是HIF-1的主要亚基,通过特异性结合VEGF的低氧应答元件促进VEGF表达38-39。研究发现,通过基因转染将修饰后的HIF-1α注入缺血组织可诱导VEGF及其下游基因表达,进而诱导缺?组织的血管新?40。推测在ROP发病过程中,VEGF作为?种特异?刺??管内皮细胞增殖及新生?管形成的生长因子,在低氧组织中的表达受HIF-1α调控,抑制HIF-1α表达可能影响视网膜新生血管发生,这为ROP预防和治疗提供了新?路?

1.2.1. 雷公藤红?

雷公藤是卫矛科雷公藤属植物,其提取物雷公藤红素是?种抗炎免疫调节剂,有“中草药激?”之称。雷公藤红素可?过下调HIF-1α/VEGF信号通路抑制高糖诱导的人视网膜血管内皮细胞增殖和?管生?41,还能下调大鼠视网膜内皮细胞中VEGF的表达,从?抑制视网膜病理性新生血管的形成42。雷公藤红素还可以?过miR-17-5p/HIF-1α/VEGF信号通路抑制OIR小鼠小胶质细胞的?活和视网膜组织炎症,?终抑制视网膜病理性新生血管生?43。综上,雷公藤红素可通过抑制内皮细胞增殖和迁移?维持内皮屏障功能以及抑制炎症反应等多种机制抑制视网膜病理?新生血管生成,显示出预防和治疗ROP的临床潜力??

雷公藤红素对肝脏、心脏?肾脏?血液系统以及生殖系统可能产生不良影响,可?过配伍、炮制等方法获得具有生物活?且低毒的衍生物44。目前,雷公藤红素尚未应用于临床研究,仍缺乏相应临床试验数据,其有效性和安全性还?要进?步研究,尤其是在新生儿中?

1.2.2. 褪黑?

褪黑素是?种主要由动物松果体分泌的?素,可在视网?45、胃肠道46等各部位合成,具有维持内皮屏障功能?保持血管???,以及抗炎、抗凋亡和减少氧化应?等作?47-48。褪黑素可阻止OIR中视网膜病理性新生血管形成,通过抑制HIF-1α/VEGF信号通路保护视网膜神经胶质细胞和减少炎症反应49。此外,外源性褪黑素具有强大的抗?管生成和抗氧化的活?,有助于保护和恢复OIR模型中的?视网膜屏障功?50。一项前瞻?研究纳?115例胎龄介?25?0天至33?6天的ROP高危早产儿,发现尿褪黑素低于3.58 ng/mL对ROP的预测敏感度和特异度分别?72%?65%51,表明褪黑素可作为ROP发展的可靠预测因子?Gitto?52研究发现,外源?褪黑素治疗通过其抗氧化、抗炎?促进视网膜?管发育?保护视神经和视网膜神经元等多种作用机制,对早产儿的视觉功能产生积极影响。研究表明,口服或肠内营养?径给予小至中剂量(0.5~10 mg/kg)的褪黑素在新生儿中显示出良好的安全?53-55,但长期使用的安全?和有效性仍?进一步验证?综上,褪黑素在ROP治疗上展现出良好的应用前景,同时也为新生?管?疾病的治疗提供了新方向?

1.3. VEGF下游的血管生成信号?路相关药物

1.3.1. 腺苷A2A受体拮抗?

腺苷是一种广泛分布于全身的天然核苷?在正常和病理条件下,细胞外腺苷通过多个G蛋白偶联受体(包括A1、A2A、A2B和A3亚型)来调控包括视网膜在内的各种组织的血管生长和发育过程56,还能够刺激人视网膜?管内皮细胞迁移并促进?管形?57。在缺氧条件下,腺苷通过A2受体调控VEGF表达,促进视网膜病理性新生血管的生成58-59?

在低氧视网膜中,腺苷-腺苷受体信号通路通过调节神经炎症、抑制神经细胞死亡?促进生理?血管生成来保护视网膜,形成?种防御机制,这也为治疗ROP的病理?新生血管提供了潜在的治疗靶?60。A2A受体的遗传失活能够减弱缺氧诱导的病理性新生血管生成,同时保持视网膜在产后正常的血管发育过程不受干?60。在A2A受体基因敲除小鼠中,A2A受体的遗传失活降低了缺氧诱导?Vegf基因表达,明显减小视网膜中心?管闭塞和非灌注区域的面积,同时抑制病理?新生血管的生成61。在OIR小鼠出生后的?7?17天,使用A2A受体拮抗剂KW6002不影响视网膜?管系统的正常发育,但选择性地减少了无?管区域和新生?管,减少了细胞凋亡和增殖,增强了OIR小鼠中星形胶质细胞对?管结构的维持及尖端细胞的迁移导向功能62。上述研究结果将为腺苷A2A受体拮抗剂治疗ROP提供了新策略和重要的临床前证据??

1.3.2. 槲皮?

槲皮素属于多酚家族,是饮食中含量?丰富的类黄酮之一,存在于多种果蔬如苹果?葡萄和洋葱中,在治疗视网膜病变、减少视网膜神经?行?病变方面表现出积极的作?63-64。研究发现,槲皮素可抑制VEGF诱导的细胞增殖和迁移,从而抑制VEGF诱导的脉络膜和视网膜?管生?65。日本桃叶珊瑚(Aucuba japonica)提取物在OIR小鼠模型中可以抑制视网膜新生?管形成,其有效成分桃叶珊瑚苷、槲皮素和山柰酚可防止VEGF诱导的视网膜?管???过高,从?改善视网膜?管渗?66。在OIR大鼠中,槲皮素还可?转缺氧诱导?致的VEGF升高,其疗效与贝伐单抗相?67。此外,槲皮素还可在视网膜感光细胞中抑制VEGF诱导的过度神经炎?68。综上,槲皮素作为一种治疗剂可以改善OIR,但还需要更多的临床研究来验证??

1.3.3. 多巴胺D2受体?动剂

多巴胺属于儿茶酚胺类物质,具有延缓近视进展?调节眼压?治疗弱视和影响新生?管生成等多种生物学效应,且不良反应较少,其受体存在于全身各器官和细胞中?多巴胺通过?活多巴胺D2受体来抑制VEGF介导的微?管???,从?发挥抗新生?管生成的作用69?

在多巴胺D2受体基因敲除的小鼠垂体内,VEGF-A蛋白和信使RNA的表达增加,长期使用多巴胺D2受体拮抗剂氟哌啶醇可增加垂体VEGF表达和催乳素释放,表明多巴胺负调控VEGF表达70。研究还发现,多巴胺通过?活多巴胺D2受体途径抑制VEGF的表达,减少OIR小鼠视网膜病理?新生血管的产生71。在斑马鱼模型中,多巴胺能激动剂可抑制受精后3 d斑马鱼幼虫视网膜?管形成,并下调VEGF过表达,具有成为新型玻璃体腔注射抗VEGF药物的潜?72。多巴胺不仅有利于视网膜的正常发育,并且能够抑制病理性新生血管生成,但其是否具有浓度依赖性以及如何确定最佳给药方式仍?进一步研究??

2. 作用于氧化应?信号通路药物

在早产儿中,高氧、缺?、再灌注和炎症等因素均可引起体内产生过多的活性氧/活?氮,进而引起细胞凋亡,这可能是视网膜血管消?、形成无灌注区和病理性新生血管的主要原因73-74。NOS是氧化应?信号通路中的重要信号分子,包括诱导型、内皮型和神经元型?氧化应?信号通路可以调节内皮型NOS和神经元型NOS的活性,使其催化生成具有保护作用的生理?一氧化氮,进?在保护?管生成?抑制细胞凋亡及维持内皮细胞屏障完整性中发挥重要作用75?

脂联素是?种主要由脂肪细胞分泌的内源?生物活性蛋白质,主要作用于胰岛β细胞、血管内皮细胞?肝细胞和免疫细胞等靶细胞,具有改善胰岛素抵抗?调节脂质代谢?抑制动脉粥样硬化?抗氧化应激以及抗炎等多种生理功?76。脂联素通过?活内皮型NOS促进生理性一氧化氮生成,从?保护血管内皮并促进损伤?管内皮修复;同时,脂联素能抑制活性氧/活?氮的产生,减轻氧化应激对视网膜?管的损伤77。一项纳?62例ROP高危早产儿(平均胎龄?32.0周)?15名足月儿的研究结果显示,早产儿血清脂联素水平明显低于足月儿,且脂联素水平与其出生体重、体重增长及营养因素独立相关,提示脂联素在早产儿的生长发育中可能发挥积极作用78。以上研究提示脂联素可能可以作为治疗视网膜血管损伤的新方法??

FGF家族含有至少20个因子,其氨基酸序列具有30%~70%的同源?,能够促进?管生成?研究表明,注射FGF21可增加小鼠脂联素的分?79-80。在OIR模型中,FGF21基因敲除小鼠的视网膜病理性新生血管增加,而玻璃体内注射长效FGF21类似物PF-05231023可减少视网膜病理性新生血管生成;进一步研究发现,脂联素基因敲除小鼠的视网膜病理?新生血管生长加速,且PF-05231023的治疗效果减?81,提示FGF21可能通过靶向增加脂联素表达来抑制视网膜病理?新生血管的生长。上述研究表明,FGF21有效抑制视网膜病理?新生血管生成,可为ROP治疗提供新的选择?

3. 作用于肿瘤坏死因?-α信号通路药物

TNF-α是一种具有广泛生物活性的促炎性细胞因子,在炎症?凋亡及?管生成中起重要作用?TNF-α可?过介导炎症反应影响视网膜病理?新生血管生成,从?参与ROP的发生发?82-83。Kociok?82研究表明,抑制TNF-α可以改变视网膜发育和?管生成?因此,干预TNF-α可能有助于新生血管?疾病的治疗,这为ROP的早期预防及治疗提供了新的?路?

ω-3-PUFA又叫多烯酸,是神经活性脂质,有助于视网膜抗血管生成和发挥神经保护作用84?ω-3-PUFA在体内代谢可生成DHA?ω-3族脂肪酸85。DHA对早产儿视网膜的正常发育十分重要,可有效预防早产儿严重ROP?3期及以上)的发生,从而降低失明风?86。Connor?87发现?ω-3-PUFA及其活?代谢产物可抑制视网膜血管周围小胶质细胞产生的TNF-α,从而发挥对视网膜病变的保护作用。因此,增加ω-3-PUFA或其生物活?产物的摄入可以减少病理性新生血管生成,还可以减轻视网膜新生?管病变的严重程度88?

?项前瞻?研究表明,ω-3-PUFA可?过促进视网膜血管正常发育?发挥抗炎作用以及改善视网膜抗氧化能力等减少早产儿视网膜病变的发生风?89。另?项研究结果发现,膳食中富?ω-3-PUFA(特别是DHA)对胎龄?27~33周的ROP高危早产儿视觉发育有?90。Pawlik?91?40例出生体重小?1.25 kg的ROP高危早产儿从出生第一天开始静脉注射由DHA鱼油乳剂、大豆和橄榄油组成的脂肪乳液(每日?脂质剂量维持在3.0~3.5 g/kg),发现患儿?光治疗ROP的风险大大降低?综上,ω-3-PUFA在人类早期视觉发育中具有重要作用,是预防和治疗ROP的一种有前景的活性物质,但其疗效还需通过大规模多中心随机对照试验进一步验证??

4. 作用于Notch信号通路药物

Notch信号通路在进化上高度保守,广泛存在于无脊椎动物和脊椎动物中,其多种配体?受体及下游分子均在视网膜表达?Notch受体通过与相应配体结合激活信号?路,从而调节细胞分化?组织发育和?管生成?在成年个体中,Notch信号缺失会提高血管内皮细胞的增殖能力并增加顶端细胞数92。Notch信号在转录水平上调控VEGF受体及细胞周期蛋白p21的表达,从??过抑制内皮细胞活?和增强hRPE修复功能的双重机制协同抑制脉络膜新生?管的生长。研究发现,Notch信号分子的缺失会促进OIR小鼠新生?管在无血管区生长,使无灌注区的面积减小;Notch受体家族的跨膜配体Dll4作为关键的负反馈调节因子,在视网膜血管发育和病理状?下通过抑制?管过度新生,促进分化良好的血管网络及时形?93。目前,对于Notch信号在新生血管生成中的作用及其潜在的治疗价?等研究已取得一定的进展,然而对于Notch信号发挥作用的方式,以及如何将其转化用于治疗ROP等相关疾病仍?进一步探究??

γ-分泌酶抑制剂DAPT是Notch受体的特异?阻滞剂,可通过阻止Notch受体S3位点γ-分泌酶的裂解抑制可溶性Notch胞内结构域蛋白的形成,从而阻止其向细胞核转移并抑制Notch信号通路??94?γ-分泌酶抑制剂在??T细胞淋巴母细胞白?病的裸鼠模型中已显示出抑制肿瘤生长的作用,其机制可能与肿瘤血管生长中断有?95。Sun?96探讨了DAPT在ROP大鼠中对新生?管的抑制作用及机制?该研究结果显示,与对照组比较,DAPT?DLL4?Notch-1?VEGF?VEGFR-1?VEGFR-2靶基因的表达水平在视网膜多个关键区(如神经节细胞层?内核层、内丛层和色素上皮层)中均下调,表明DAPT在ROP大鼠中具有下调促?管生成基因表达的作用,其机制与DLL4/Notch-1信号通路有关。因此,DAPT和其?γ-分泌酶抑制剂可能在血管?视网膜病变中发挥抗?管生成的作用?

5. ? ?

本文从信号?路出发,归纳?结了ROP关键信号通路及有潜力的治疗药物?针对VEGF相关的信号?路、氧化应?通路、TNF-α信号通路和Notch信号通路等的精准调控有望为ROP患?提供更有效的治疗?择。目前,普萘洛尔、IGF-1、褪黑素、脂联素?ω-3-PUFA补充剂正在进行临床试验;塞来昔布、雷公藤红素、腺苷A2A受体拮抗剂?槲皮素、多巴胺D2受体?动剂、FGF21?γ-分泌酶抑制剂DAPT正在?展动物试验?其中,普萘洛尔和IGF-1已有大规模临床试验的数据基础,展现出良好的应用前景??之,进?步挖掘药物在各信号?路中的作用和发现新的治疗策略,将有助于遏制ROP在世界范围内的流行??

Supplementary information

本文附加文件见电子版?

Acknowledgments

研究得到浙江省中医药科技计划?2023ZL512)和温州市科协服务科?创新项目(kjfw08)支?

Acknowledgments

The study was supported by the Tradi-tional Chinese Medicine Science and Technology Project of Zhejiang Province (2023ZL512) and Wenzhou Science and Technology Association Service Project for Science and Tech-nology Innovation (kjfw08)

[缩略?]

早产儿视网膜病变(retinopathy of prematurity,ROP);?管内皮生长因子(vascular endothelial growth factor,VEGF);磷脂酰肌?3-?酶(phosphoinositide 3-kinase,PI3K);蛋白?酶B(protein kinase B,PKB,Akt);低氧诱导因子(hypoxia-inducible factor,HIF);肿瘤坏死因子(tumor necrosis factor,TNF);胰岛素样生长因子(insulin-like growth factor,IGF);氧诱导视网膜病变(oxygen-induced retinopathy,OIR);人视网膜色素上皮细胞(human retinal pigment epithelium,hRPE);?氧化氮合酶(nitric oxide synthase,NOS);成纤维细胞生长因子(fibroblast growth factor,FGF);多不饱和脂肪酸(polyunsaturated fatty acid,PUFA);二十二碳六烯酸(docosahexoenoic acid,DHA);N-[N-?3?5-二氟苯乙酰基?-L-丙氨酰基]-S-苯基甘氨酸叔丁酯?N-[N-?3?5-difluorophenacetyl?-L-alanyl]-S-phenylglycine-butyl ester,DAPT?

利益冲突声明

?有作者均声明不存在利益冲?

Conflict of Interests

The authors declare that there is no conflict of interests

作?贡?

谢彦茜?郑穗联和杨晖参与论文?题和设计或参与资料获取、分析或解释,起草研究论文或修改重要智力性内?. ?有作者均已阅读并认可?终稿件,并对数据的完整?和安全性负?. 具体见电子版

医学伦理

研究不涉及人体或动物实验

Ethical Approval

This study does not contain any studies with human participants or animals performed by any of the authors

数据可用?

本研究未生成任何新数据集,所有分析数据均来已公开的来源,并已在文中明确引?

Data Availability

This study did not generate any new datasets? and all data analyzed are from publicly available sources? as cited in the manuscript

参?文献(References?

  • 1.ZHANG R H, LIU Y M, DONG L, et al. Prevalence, years lived with disability, and time trends for 16 causes of blindness and vision impairment: findings highlight retinopathy of prematurity[J]. Front Pediatr, 2022, 10: 735335. 10.3389/fped.2022.735335 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.DABLOUK M, CHHABRA A, MASOUD A T. Recur-rence of retinopathy of prematurity following anti-vascular endothelial growth factor (anti-VEGF) therapy: a systematic review and meta-analysis[J/OL]. Cureus, 2024, 16(11): e73286. 10.7759/cureus.73286 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.STAHL A, LEPORE D, FIELDER A, et al. Ranibizumab versus laser therapy for the treatment of very low birthweight infants with retinopathy of prematurity (RAINBOW): an open-label randomised controlled trial[J]. Lancet, 2019, 394(10208): 1551-1559. 10.1016/s0140-6736(19)31344-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.JALALI S, BALAKRISHNAN D, ZEYNALOVA Z, et al. Serious adverse events and visual outcomes of rescue therapy using adjunct bevacizumab to laser and surgery for retinopathy of prematurity. The Indian twin cities retinopathy of prematurity screening database report number 5[J]. Arch Dis Child Fetal Neonatal Ed, 2013, 98(4): F327-F333. 10.1136/archdischild-2012-302365 [DOI] [PubMed] [Google Scholar]
  • 5.DI Y, ZHANG Y, HUI L, et al. Cysteine-rich 61 RNA interference inhibits pathological angiogenesis via the phosphatidylinositol 3-kinase/Akt-vascular endothelial growth factor signaling pathway in endothelial cells[J]. Mol Med Rep, 2016, 14(5): 4321-4327. 10.3892/mmr.2016.5772 [DOI] [PubMed] [Google Scholar]
  • 6.ALVAREZ Y, ASTUDILLO O, JENSEN L, et al. Selec-tive inhibition of retinal angiogenesis by targeting PI3 kinase[J/OL]. PLoS One, 2009, 4(11): e7867. 10.1371/journal.pone.0007867 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.ZHAO F, YANG X, XU G, et al. Propranolol suppresses HUVEC viability, migration, VEGF expression, and pro-motes apoptosis by downregulation of miR-4295[J]. J Cell Biochem, 2019, 120(4): 6614-6623. 10.1002/jcb.27957 [DOI] [PubMed] [Google Scholar]
  • 8.PAN W K, LI P, GUO Z T, et al. Propranolol induces regression of hemangioma cells via the down-regulation of the PI3K/Akt/ENOS/VEGF pathway[J]. Pediatr Blood Cancer, 2015, 62(8): 1414-1420. 10.1002/pbc.25453 [DOI] [PubMed] [Google Scholar]
  • 9.BÜHRER C, BASSLER D. Oral propranolol: a new treatment for infants with retinopathy of prematurity?[J]. Neonatology, 2015, 108(1): 49-52. 10.1159/000381659 [DOI] [PubMed] [Google Scholar]
  • 10.DANKHARA N, KALIKKOT THEKKEVEEDU R, PATEL J, et al. Association of infantile hemangiomas and retinopathy of prematurity: analysis of the multi-center KID[J]. Biomed Hub, 2022, 7(1): 24-30. 10.1159/000521413 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.MONTE M DAL, CASINI G, LA MARCA G, et al. Eye drop propranolol administration promotes the recovery of oxygen-induced retinopathy in mice[J]. Exp Eye Res, 2013, 111: 27-35. 10.1016/j.exer.2013.03.013 [DOI] [PubMed] [Google Scholar]
  • 12.RISTORI C, FILIPPI L, MONTE M DAL, et al. Role of the adrenergic system in a mouse model of oxygen-induced retinopathy: antiangiogenic effects of beta-adrenoreceptor blockade[J]. Invest Ophthalmol Vis Sci, 2011, 52(1): 155-170. 10.1016/j.survophthal.2011.04.001 [DOI] [PubMed] [Google Scholar]
  • 13.QADRI A, CAI C L, DESLOUCHES K, et al. Ocular versus oral propranolol for prevention and/or treatment of oxygen-induced retinopathy in a rat model[J]. J Ocul Pharmacol Ther, 2021, 37(2): 112-130. 10.1089/jop.2020.0092 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.FILIPPI L, CAVALLARO G, BAGNOLI P, et al. Oral propranolol for retinopathy of prematurity: risks, safety concerns, and perspectives[J]. J Pediatr, 2013, 163(6): 1570-1577.e6. 10.1016/j.jpeds.2013.07.049 [DOI] [PubMed] [Google Scholar]
  • 15.KONG H B, ZHENG G Y, HE B M, et al. Clinical efficacy and safety of propranolol in the prevention and treatment of retinopathy of prematurity: a meta-analysis of randomized controlled trials[J]. Front Pediatr, 2021, 9: 631673. 10.3389/fped.2021.631673 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.MAKHOUL I R, PELEG O, MILLER B, et al. Oral propranolol versus placebo for retinopathy of prema-turity: a pilot, randomised, double-blind prospective study[J]. Arch Dis Child, 2013, 98(7): 565-567. 10.1136/archdischild-2013-303951 [DOI] [PubMed] [Google Scholar]
  • 17.BASTUG O, KORKMAZ L, OZDEMIR A, et al. Long- and short-term effects of propranolol hydrochloride treat-ment on very preterm newborns[J]. J Clin Neonatol, 2020, 9(2): 111. 10.4103/jcn.jcn_28_19 [DOI] [Google Scholar]
  • 18.PASCARELLA F, SCARAMUZZO R T, PINI A, et al. Propranolol: a new pharmacologic approach to counter retinopathy of prematurity progression[J]. Front Pediatr, 2024, 12: 1322783. 10.3389/fped.2024.1322783 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.FILIPPI L, CAVALLARO G, BAGNOLI P, et al. Pro-pranolol 0.1% eye micro-drops in newborns with reti-nopathy of prematurity: a pilot clinical trial[J]. Pediatr Res, 2017, 81(2): 307-314. 10.1038/pr.2016.230 [DOI] [PubMed] [Google Scholar]
  • 20.FILIPPI L, CAVALLARO G, BERTI E, et al. Propranolol 0.2% eye micro-drops for retinopathy of prematurity: a prospective phase IIB study[J]. Front Pediatr, 2019, 7: 180. 10.3389/fped.2019.00180 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.HELLSTRÖM A, CARLSSON B, NIKLASSON A, et al. IGF-I is critical for normal vascularization of the human retina[J]. J Clin Endocrinol Metab, 2002, 87(7): 3413-3416. 10.1210/jcem.87.7.8629 [DOI] [PubMed] [Google Scholar]
  • 22.HERMANN C, ASSMUS B, URBICH C, et al. Insulin-mediated stimulation of protein kinase Akt: a potent survival signaling cascade for endothelial cells[J]. Arterioscler Thromb Vasc Biol, 2000, 20(2): 402-409. 10.1161/01.atv.20.2.402 [DOI] [PubMed] [Google Scholar]
  • 23.KONDO T, VICENT D, SUZUMA K, et al. Knockout of insulin and IGF-1 receptors on vascular endothelial cells protects against retinal neovascularization[J]. J Clin Invest, 2003, 111(12): 1835-1842. 10.1172/jci17455 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.ZHENG W, MENG Q, WANG H, et al. IGF-1-mediated survival from induced death of human primary cultured retinal pigment epithelial cells is mediated by an Akt-dependent signaling pathway[J]. Mol Neurobiol, 2018, 55(3): 1915-1927. 10.1007/s12035-017-0447-0 [DOI] [PubMed] [Google Scholar]
  • 25.丁月?, 陈志?, 赵云?, ?. ?清胰岛素样生长因?-1与早产儿视网膜病发生的关?[J]. 国际医药卫生导报, 2014, 20(21): 3229-3231. 24771521 [Google Scholar]; DING Yueqin, CHEN Zhifeng, ZHAO Yunkai, et al. Correlation between serum insulin-like growth factor-1 and retinopathy of prematurity[J]. International Medicine and Health Guidance News, 2014, 20(21): 3229-3231. (in Chinese) 10.3760/cma.j.issn.1007-1245.2014.21.007. [DOI] [Google Scholar]
  • 26.VANHAESEBROUCK S, DANIËLS H, MOONS L, et al. Oxygen-induced retinopathy in mice: amplification by neonatal IGF-I deficit and attenuation by IGF-I administration[J]. Pediatr Res, 2009, 65(3): 307-310. 10.1203/PDR.0b013e3181973dc8 [DOI] [PubMed] [Google Scholar]
  • 27.SMITH L E, KOPCHICK J J, CHEN W, et al. Essential role of growth hormone in ischemia-induced retinal neovascularization[J]. Science, 1997, 276(5319): 1706-1709. 10.1126/science.276.5319.1706 [DOI] [PubMed] [Google Scholar]
  • 28.HELLSTROM A, PERRUZZI C, JU M, et al. Low IGF-I suppresses VEGF-survival signaling in retinal endo-thelial cells: direct correlation with clinical retinopathy of prematurity[J]. Proc Natl Acad Sci U S A, 2001, 98(10): 5804-5808. 10.1073/pnas.101113998 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.LEY D, HANSEN-PUPP I, NIKLASSON A, et al. Longi-tudinal infusion of a complex of insulin-like growth factor-I and IGF-binding protein-3 in five preterm infants: pharmacokinetics and short-term safety[J]. Pediatr Res, 2013, 73(1): 68-74. 10.1038/pr.2012.146 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.HANSEN-PUPP I, HELLSTRÖM A, HAMDANI M, et al. Continuous longitudinal infusion of rhIGF-1/rhIGFBP-3 in extremely preterm infants: evaluation of feasibility in a phase Ⅱ study[J]. Growth Horm IGF Res, 2017, 36: 44-51. 10.1016/j.ghir.2017.08.004 [DOI] [PubMed] [Google Scholar]
  • 31.LEY D, HALLBERG B, HANSEN-PUPP I, et al. rhIGF-1/rhIGFBP-3 in preterm infants: a phase 2 randomized controlled trial[J]. J Pediatr, 2019, 206: 56-65.e8. 10.1016/j.jpeds.2018.10.033 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.BRETZ C A, SAVAGE S, CAPOZZI M, et al. The role of the NFAT signaling pathway in retinal neovasculari-zation[J]. Invest Ophthalmol Vis Sci, 2013, 54(10): 7020-7027. 10.1167/iovs.13-12183 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.KAMINSKA K, SZCZYLIK C, LIAN F, et al. The role of prostaglandin E2 in renal cell cancer development: future implications for prognosis and therapy[J]. Future Oncol, 2014, 10(14): 2177-2187. 10.2217/fon.14.152 [DOI] [PubMed] [Google Scholar]
  • 34.LIU N N, SUN Y Z, ZHAO N, et al. Rofecoxib inhibits retinal neovascularization via down regulation of cyclooxy-genase-2 and vascular endothelial growth factor expres-sion[J]. Clin Exp Ophthalmol, 2015, 43(5): 458-465. 10.1111/ceo.12473 [DOI] [PubMed] [Google Scholar]
  • 35.SUN Y Z, CAI N, LIU N N. Celecoxib down-regulates the hypoxia-induced expression of HIF-1α and VEGF through the PI3K/AKT pathway in retinal pigment epithelial cells[J]. Cell Physiol Biochem, 2017, 44(4): 1640-1650. 10.1159/000485764 [DOI] [PubMed] [Google Scholar]
  • 36.LIU N, CHEN L, CAI N. Celecoxib attenuates retinal angiogenesis in a mouse model of oxygen-induced retino-pathy[J]. Int J Clin Exp Pathol, 2015, 8(5): 4990-4998. [PMC free article] [PubMed] [Google Scholar]
  • 37.? ?, ? ?, 高晓?, ?. 玻璃体腔注射塞来昔布抑制大鼠视网膜新生血管的作用[J]. 国际眼科杂志, 2017, 17(4): 635-638. [Google Scholar]; LI Peng, REN Bing, GAO Xiaowei, et al. Effect of intravitreal injection of celecoxib on neovascularization in rats[J]. International Eye Science, 2017, 17(4): 635-638. (in Chinese) [Google Scholar]
  • 38.JIN K L, MAO X O, NAGAYAMA T, et al. Induction of vascular endothelial growth factor and hypoxia-inducible factor-1alpha by global ischemia in rat brain[J]. Neuroscience, 2000, 99(3): 577-585. 10.1016/s0306-4522(00)00207-4 [DOI] [PubMed] [Google Scholar]
  • 39.RICHARD D E, BERRA E, POUYSSÉGUR J. Angio-genesis: how a tumor adapts to hypoxia[J]. Biochem Biophys Res Commun, 1999, 266(3): 718-722. 10.1006/bbrc.1999.1889 [DOI] [PubMed] [Google Scholar]
  • 40.VINCENT K A, SHYU K G, LUO Y, et al. Angiogenesis is induced in a rabbit model of hindlimb ischemia by naked DNA encoding an HIF-1alpha/VP16 hybrid trans-cription factor[J]. Circulation, 2000, 102(18): 2255-2261. 10.1161/01.cir.102.18.2255 [DOI] [PubMed] [Google Scholar]
  • 41.FANG J, CHANG X. Celastrol inhibits the proliferation and angiogenesis of high glucose-induced human retinal endothelial cells[J]. Biomed Eng Online, 2021, 20(1): 65. 10.1186/s12938-021-00904-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.杨杰, 彭辉?, 陈??, ?. 雷公藤红素对高糖环境下大鼠视网膜?管内皮细胞VEGF和PEDF表达的影?[J]. 眼科新进?, 2011, 31(4): 321-323, 331. [Google Scholar]; YANG Jie, PENG Huican, CHEN Qian, et al. Effect of tripterine on expression of VEGF and PEDF of retinal endothelial cells in mouse with high glucose[J]. Recent Advances in Ophthalmology, 2011, 31(4): 321-323, 331. (in Chinese) [Google Scholar]
  • 43.ZHAO K, JIANG Y, ZHANG J, et al. Celastrol inhibits pathologic neovascularization in oxygen-induced reti-nopathy by targeting the miR-17-5p/HIF-1α/VEGF pathway[J]. Cell Cycle, 2022, 21(19): 2091-2108. 10.1080/15384101.2022.2087277 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.JIN C, WU Z, WANG L, et al. CYP450s-activity relations of celastrol to interact with triptolide reveal the reasons of hepatotoxicity of Tripterygium wilfordii [J]. Molecules, 2019, 24(11): 2162. 10.3390/molecules24112162 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.LIU C, FUKUHARA C, WESSEL J H 3rd, et al. Locali-zation of Aa-nat mRNA in the rat retina by fluorescence in situ hybridization and laser capture microdissection[J]. Cell Tissue Res, 2004, 315(2): 197-201. 10.1007/s00441-003-0822-1 [DOI] [PubMed] [Google Scholar]
  • 46.BUBENIK G A. Gastrointestinal melatonin: localization, function, and clinical relevance[J]. Dig Dis Sci, 2002, 47(10): 2336-2348. 10.1023/a:1020107915919 [DOI] [PubMed] [Google Scholar]
  • 47.ALLURI H, WILSON R L, ANASOOYA SHAJI C, et al. Melatonin preserves blood-brain barrier integrity and permeability via matrix metalloproteinase-9 inhibi-tion[J/OL]. PLoS One, 2016, 11(5): e0154427. 10.1371/journal.pone.0154427 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.ZHOU H, ZHANG Y, HU S, et al. Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis[J/OL]. J Pineal Res, 2017, 63(1): e12413. 10.1111/jpi.12413 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.XU Y, LU X, HU Y, et al. Melatonin attenuated retinal neovascularization and neuroglial dysfunction by inhibi-tion of HIF-1α-VEGF pathway in oxygen-induced reti-nopathy mice[J/OL]. J Pineal Res, 2018, 64(4): e12473. 10.1111/jpi.12473 [DOI] [PubMed] [Google Scholar]
  • 50.KATARGINA L A, CHESNOKOVA N B, BEZNOS O V, et al. Melatonin as a new promising agent for the treatment and prevention of retinopathy of prematurity[J]. Vestn Oftalmol, 2016, 132(6): 59-63. 10.17116/oftalma2016132659-63 [DOI] [PubMed] [Google Scholar]
  • 51.Н PAVLYSHYN, SARAPUK I, KOZAK K. The rela-tionship of melatonin concentration in preterm infants and adverse outcomes in the late neonatal period[J]. Biochem Med, 2023, 33(1): 010706. 10.11613/bm.2023.010706 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.GITTO E, MARSEGLIA L, MANTI S, et al. Protective role of melatonin in neonatal diseases[J]. Oxid Med Cell Longev, 2013, 2013: 980374. 10.1155/2013/980374 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.ALY H, ELMAHDY H, EL-DIB M, et al. Melatonin use for neuroprotection in perinatal asphyxia: a randomized controlled pilot study[J]. J Perinatol, 2015, 35(3): 186-191. 10.1038/jp.2014.186 [DOI] [PubMed] [Google Scholar]
  • 54.BEHURA S S, DHANAWAT A, NAYAK B, et al. Com-parison between oral melatonin and 24% sucrose for pain management during retinopathy of prematurity screening: a randomized controlled trial[J]. Turk J Pediatr, 2022, 64(6): 1013-1020. 10.24953/turkjped.2022.115 [DOI] [PubMed] [Google Scholar]
  • 55.CARLONI S, PROIETTI F, ROCCHI M, et al. Melatonin pharmacokinetics following oral administration in pre-term neonates[J]. Molecules, 2017, 22(12): 2115. 10.3390/molecules22122115 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.CHEN J F, ZHANG S, ZHOU R, et al. Adenosine recep-tors and caffeine in retinopathy of prematurity[J]. Mol Aspects Med, 2017, 55: 118-125. 10.1016/j.mam.2017.01.001 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.LUTTY G A, MATHEWS M K, MERGES C, et al. Adenosine stimulates canine retinal microvascular endothelial cell migration and tube formation[J]. Curr Eye Res, 1998, 17(6): 594-607. 10.1076/ceyr.17.6.594.5173 [DOI] [PubMed] [Google Scholar]
  • 58.GU J W, BRADY A L, ANAND V, et al. Adenosine upregulates VEGF expression in cultured myocardial vascular smooth muscle cells[J]. Am J Physiol, 1999, 277(2): H595-H602. 10.1152/ajpheart.1999.277.2.h595 [DOI] [PubMed] [Google Scholar]
  • 59.AFZAL A, SHAW L C, CABALLERO S, et al. Reduc-tion in preretinal neovascularization by ribozymes that cleave the A2B adenosine receptor mRNA[J]. Circ Res, 2003, 93(6): 500-506. 10.1161/01.res.0000091260.78959.bc [DOI] [PubMed] [Google Scholar]
  • 60.ZHANG S, LI H, LI B, et al. Adenosine A1 receptors selectively modulate oxygen-induced retinopathy at the hyperoxic and hypoxic phases by distinct cellular mechanisms[J]. Invest Ophthalmol Vis Sci, 2015, 56(13): 8108-8119. 10.1167/iovs.15-17202 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.LIU X L, ZHOU R, PAN Q Q, et al. Genetic inactiva-tion of the adenosine A2A receptor attenuates pathologic but not developmental angiogenesis in the mouse retina[J]. Invest Ophthalmol Vis Sci, 2010, 51(12): 6625-6632. 10.1167/iovs.09-4900 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.ZHOU R, ZHANG S, GU X, et al. Adenosine A2A receptor antagonists act at the hyperoxic phase to confer protection against retinopathy[J]. Mol Med, 2018, 24(1): 41. 10.1186/s10020-018-0038-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.CHEN B, HE T, XING Y, et al. Effects of quercetin on the expression of MCP-1, MMP-9 and VEGF in rats with diabetic retinopathy[J]. Exp Ther Med, 2017, 14(6): 6022-6026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.OLA M S, AHMED M M, SHAMS S, et al. Neuropro-tective effects of quercetin in diabetic rat retina[J]. Saudi J Biol Sci, 2017, 24(6): 1186-1194. 10.1016/j.sjbs.2016.11.017 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.LI F, BAI Y, ZHAO M, et al. Quercetin inhibits vascular endothelial growth factor-induced choroidal and retinal angiogenesis in vitro [J]. Ophthalmic Res, 2015, 53(3): 109-116. 10.1159/000369824 [DOI] [PubMed] [Google Scholar]
  • 66.JUNG E, JUNG W K, PARK S B, et al. Aucuba japonica extract inhibits retinal neovascularization in a mouse model of oxygen-induced retinopathy, with its bioactive components preventing VEGF-induced retinal vascular hyperpermeability[J]. Food Sci Nutr, 2020, 8(6): 2895-2903. 10.1002/fsn3.1590 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.KAYMAZ A, ULAS F, ERIMSAH S, et al. Investigation of the effect of quercetin in an experimental oxygen-induced retinopathy model[J]. Exp Biomed Res, 2021, 4(2): 131-140. 10.30714/j-ebr.2021267976 [DOI] [Google Scholar]
  • 68.LEE M, YUN S, LEE H, et al. Quercetin mitigates inflam-matory responses induced by vascular endothelial growth factor in mouse retinal photoreceptor cells through suppression of nuclear factor kappa B[J]. Int J Mol Sci, 2017, 18(11): 2497. 10.3390/ijms18112497 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.OSINGA T E, LINKS T P, DULLAART R P F, et al. Emerging role of dopamine in neovascularization of pheochromocytoma and paraganglioma[J]. FASEB J, 2017, 31(6): 2226-2240. 10.1096/fj.201601131r [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.CRISTINA C, DÍAZ-TORGA G, BALDI A, et al. Increased pituitary vascular endothelial growth factor-a in dopaminergic D2 receptor knockout female mice[J]. Endocrinology, 2005, 146(7): 2952-2962. 10.1210/en.2004-1445 [DOI] [PubMed] [Google Scholar]
  • 71.张凤?, 高洪?, ? ?, ?. 多巴胺对氧诱导视网膜病变小鼠视网膜新生血管的影响[J]. 眼科新进?, 2023, 43(1): 25-29. [Google Scholar]; ZHANG Fengyi, GAO Honglian, QIU Yu, et al. Effect of dopamine on retinal neovascularization in oxygen-induced retinopathy mice[J]. Recent Advances in Ophthalmology, 2023, 43(1): 25-29. (in Chinese) [Google Scholar]
  • 72.KASICA N, ŚWIĘCH A, SAŁADZIAK K, et al. The inhibitory effect of selected D2 dopaminergic receptor agonists on VEGF-dependent neovascularization in zebrafish larvae: potential new therapy in ophthalmic diseases[J]. Cells, 2022, 11(7): 1202. 10.3390/cells11071202 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.PENN J S, TOLMAN B L, LOWERY L A. Variable oxygen exposure causes preretinal neovascularization in the newborn rat[J]. Invest Ophthalmol Vis Sci, 1993, 34(3): 576-585. [PubMed] [Google Scholar]
  • 74.SAITO Y, GEISEN P, UPPAL A, et al. Inhibition of NAD(P)H oxidase reduces apoptosis and avascular retina in an animal model of retinopathy of prematurity[J]. Mol Vis, 2007, 13: 840-853. [PMC free article] [PubMed] [Google Scholar]
  • 75.BEAUCHAMP M H, SENNLAUB F, SPERANZA G, et al. Redox-dependent effects of nitric oxide on micro-vascular integrity in oxygen-induced retinopathy[J]. Free Radic Biol Med, 2004, 37(11): 1885-1894. 10.1016/j.freeradbiomed.2004.09.008 [DOI] [PubMed] [Google Scholar]
  • 76.OKAMOTO Y, KIHARA S, FUNAHASHI T, et al. Adi-ponectin: a key adipocytokine in metabolic syndrome[J]. Clin Sci, 2006, 110(3): 267-278. 10.1042/cs20050182 [DOI] [PubMed] [Google Scholar]
  • 77.朱巧?, 谢安?, 郝艳?. 脂联素对小鼠氧诱导视网膜病变的保护作?[J]. 国际眼科杂志, 2015, 15(10): 1695-1699. [Google Scholar]; ZHU Qiaoping, XIE Anming, HAO Yanfang. Protection of adiponectin to oxygen-induced retinopathy in mice[J]. International Eye Science, 2015, 15(10): 1695-1699. (in Chinese) [Google Scholar]
  • 78.SIAHANIDOU T, MANDYLA H, PAPASSOTIRIOU G P, et al. Circulating levels of adiponectin in preterm infants[J]. Arch Dis Child Fetal Neonatal Ed, 2007, 92(4): F286-F290. 10.1136/adc.2006.106112 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.HOLLAND W L, ADAMS A C, BROZINICK J T, et al. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice[J]. Cell Metab, 2013, 17(5): 790-797. 10.1016/j.cmet.2013.03.019 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.LIN Z, TIAN H, LAM K S L, et al. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice[J]. Cell Metab, 2013, 17(5): 779-789. 10.1016/j.cmet.2013.04.005 [DOI] [PubMed] [Google Scholar]
  • 81.FU Z, GONG Y, LIEGL R, et al. FGF21 administration suppresses retinal and choroidal neovascularization in mice[J]. Cell Rep, 2017, 18(7): 1606-1613. 10.1016/j.celrep.2017.01.014 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.KOCIOK N, RADETZKY S, KROHNE T U, et al. Patho-logical but not physiological retinal neovascularization is altered in TNF-Rp55-receptor-deficient mice[J]. Invest Ophthalmol Vis Sci, 2006, 47(11): 5057-5065. 10.1167/iovs.06-0407 [DOI] [PubMed] [Google Scholar]
  • 83.SHI X, SEMKOVA I, MÜTHER P S, et al. Inhibition of TNF-alpha reduces laser-induced choroidal neovascu-larization[J]. Exp Eye Res, 2006, 83(6): 1325-1334. 10.1016/j.exer.2006.07.007 [DOI] [PubMed] [Google Scholar]
  • 84.SANGIOVANNI J P, CHEW E Y. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina[J]. Prog Retin Eye Res, 2005, 24(1): 87-138. 10.1016/j.preteyeres.2004.06.002 [DOI] [PubMed] [Google Scholar]
  • 85.SIMÓN M V, AGNOLAZZA D L, GERMAN O L, et al. Synthesis of docosahexaenoic acid from eicosapentae-noic acid in retina neurons protects photoreceptors from oxidative stress[J]. J Neurochem, 2016, 136(5): 931-946. 10.1111/jnc.13487 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.BERNABE-GARCÍA M, VILLEGAS-SILVA R, VILLAVICENCIO-TORRES A, et al. Enteral docosahex-aenoic acid and retinopathy of prematurity: a randomized clinical trial[J]. JPEN J Parenter Enteral Nutr, 2019, 43(7): 874-882. 10.1002/jpen.1497 [DOI] [PubMed] [Google Scholar]
  • 87.CONNOR K M, SANGIOVANNI J P, LOFQVIST C, et al. Increased dietary intake of omega-3-polyunsatu-rated fatty acids reduces pathological retinal angio-genesis[J]. Nat Med, 2007, 13(7): 868-873. 10.1038/nm1591 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.STAHL A, SAPIEHA P, CONNOR K M, et al. Short communication: PPAR gamma mediates a direct antian-giogenic effect of omega 3-PUFAs in proliferative reti-nopathy[J]. Circ Res, 2010, 107(4): 495-500. 10.1161/circresaha.110.221317 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.PAWLIK D, LAUTERBACH R, WALCZAK M, et al. Fish-oil fat emulsion supplementation reduces the risk of retinopathy in very low birth weight infants: a pro-spective, randomized study[J]. JPEN J Parenter Enteral Nutr, 2014, 38(6): 711-716. 10.1177/0148607113499373 [DOI] [PubMed] [Google Scholar]
  • 90.BIRCH E E, BIRCH D G, HOFFMAN D R, et al. Dietary essential fatty acid supply and visual acuity development[J]. Invest Ophthalmol Vis Sci, 1992, 33(11): 3242-3253. [PubMed] [Google Scholar]
  • 91.PAWLIK D, LAUTERBACH R, TURYK E. Fish-oil fat emulsion supplementation may reduce the risk of severe retinopathy in VLBW infants[J]. Pediatrics, 2011, 127(2): 223-228. 10.1542/peds.2010-2427 [DOI] [PubMed] [Google Scholar]
  • 92.窦国?. Notch信号通路在脉络膜新生?管发生发展中的作?[D]. 西安: 第四军医大学, 2011. [Google Scholar]; DOU Guorui. The role of Notch signaling pathway in the development of choroidal neovascularization[D]. Xi’an: The Fourth Military Medical University, 2011. (in Chinese) [Google Scholar]
  • 93.LOBOV I B, RENARD R A, PAPADOPOULOS N, et al. Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting[J]. Proc Natl Acad Sci U S A, 2007, 104(9): 3219-3224. 10.1073/pnas.0611206104 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.XIAO Y G, WANG W, GONG D, et al. γ-Secretase inhibitor DAPT attenuates intimal hyperplasia of vein grafts by inhibition of Notch1 signaling[J]. Lab Invest, 2014, 94(6): 654-662. 10.1038/labinvest.2014.58 [DOI] [PubMed] [Google Scholar]
  • 95.MASUDA S, KUMANO K, SUZUKI T, et al. Dual antitumor mechanisms of Notch signaling inhibitor in a T-cell acute lymphoblastic leukemia xenograft model[J]. Cancer Sci, 2009, 100(12): 2444-2450. 10.1111/j.1349-7006.2009.01328.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.SUN W, LI J, LI Y, et al. Gamma-secretase inhibitor, DAPT, prevents the development of retinopathy of prematurity in a rat model by regulating the delta-like ligand 4/Notch homolog-1 (DLL4/Notch-1) pathway[J]. Med Sci Monit, 2019, 25: 492-499. 10.12659/msm.913828 [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

本文附加文件见电子版?

Data Availability Statement

This study did not generate any new datasets? and all data analyzed are from publicly available sources? as cited in the manuscript


Articles from Journal of Zhejiang University (Medical Sciences) are provided here courtesy of Zhejiang University Press

RESOURCES