Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Dec 1;320(Pt 2):595–597. doi: 10.1042/bj3200595

Human microglia convert l-tryptophan into the neurotoxin quinolinic acid.

M P Heyes 1, C L Achim 1, C A Wiley 1, E O Major 1, K Saito 1, S P Markey 1
PMCID: PMC1217971  PMID: 8973572

Abstract

Immune activation leads to accumulations of the neurotoxin and kynurenine pathway metabolite quinolinic acid within the central nervous system of human patients. Whereas macrophages can convert L-tryptophan to quinolinic acid, it is not known whether human brain microglia can synthesize quinolinic acid. Human microglia, peripheral blood macrophages and cultures of human fetal brain cells (astrocytes and neurons) were incubated with [13C6]L-tryptophan in the absence or presence of interferon gamma. [13C6]Quinolinic acid was identified and quantified by gas chromatography and electron-capture negative-chemical ionization mass spectrometry. Both L-kynurenine and [13C6]quinolinic acid were produced by unstimulated cultures of microglia and macrophages. Interferon gamma, an inducer of indoleamine 2,3-dioxygenase, increased the accumulation of L-kynurenine by all three cell types (to more than 40 microM). Whereas large quantities of [13C6]quinolinic acid were produced by microglia and macrophages (to 438 and 1410 nM respectively), minute quantities of [13C6]quinolinic acid were produced in human fetal brain cultures (not more than 2 nM). Activated microglia and macrophage infiltrates into the brain might be an important source of accelerated conversion of L-tryptophan into quinolinic acid within the central nervous system in inflammatory diseases.

Full Text

The Full Text of this article is available as a PDF (152.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blight A. R., Saito K., Heyes M. P. Increased levels of the excitotoxin quinolinic acid in spinal cord following contusion injury. Brain Res. 1993 Dec 31;632(1-2):314–316. doi: 10.1016/0006-8993(93)91167-q. [DOI] [PubMed] [Google Scholar]
  2. Brouwers P., Heyes M. P., Moss H. A., Wolters P. L., Poplack D. G., Markey S. P., Pizzo P. A. Quinolinic acid in the cerebrospinal fluid of children with symptomatic human immunodeficiency virus type 1 disease: relationships to clinical status and therapeutic response. J Infect Dis. 1993 Dec;168(6):1380–1386. doi: 10.1093/infdis/168.6.1380. [DOI] [PubMed] [Google Scholar]
  3. Elder G. A., Major E. O. Early appearance of type II astrocytes in developing human fetal brain. Brain Res. 1988 Jul 1;470(1):146–150. doi: 10.1016/0165-3806(88)90211-8. [DOI] [PubMed] [Google Scholar]
  4. Halperin J. J., Heyes M. P. Neuroactive kynurenines in Lyme borreliosis. Neurology. 1992 Jan;42(1):43–50. doi: 10.1212/wnl.42.1.43. [DOI] [PubMed] [Google Scholar]
  5. Heyes M. P., Brew B. J., Martin A., Price R. W., Salazar A. M., Sidtis J. J., Yergey J. A., Mouradian M. M., Sadler A. E., Keilp J. Quinolinic acid in cerebrospinal fluid and serum in HIV-1 infection: relationship to clinical and neurological status. Ann Neurol. 1991 Feb;29(2):202–209. doi: 10.1002/ana.410290215. [DOI] [PubMed] [Google Scholar]
  6. Heyes M. P., Brew B. J., Saito K., Quearry B. J., Price R. W., Lee K., Bhalla R. B., Der M., Markey S. P. Inter-relationships between quinolinic acid, neuroactive kynurenines, neopterin and beta 2-microglobulin in cerebrospinal fluid and serum of HIV-1-infected patients. J Neuroimmunol. 1992 Sep;40(1):71–80. doi: 10.1016/0165-5728(92)90214-6. [DOI] [PubMed] [Google Scholar]
  7. Heyes M. P., Markey S. P. Quantification of quinolinic acid in rat brain, whole blood, and plasma by gas chromatography and negative chemical ionization mass spectrometry: effects of systemic L-tryptophan administration on brain and blood quinolinic acid concentrations. Anal Biochem. 1988 Oct;174(1):349–359. doi: 10.1016/0003-2697(88)90556-8. [DOI] [PubMed] [Google Scholar]
  8. Heyes M. P., Saito K., Crowley J. S., Davis L. E., Demitrack M. A., Der M., Dilling L. A., Elia J., Kruesi M. J., Lackner A. Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain. 1992 Oct;115(Pt 5):1249–1273. doi: 10.1093/brain/115.5.1249. [DOI] [PubMed] [Google Scholar]
  9. Heyes M. P., Saito K., Jacobowitz D., Markey S. P., Takikawa O., Vickers J. H. Poliovirus induces indoleamine-2,3-dioxygenase and quinolinic acid synthesis in macaque brain. FASEB J. 1992 Aug;6(11):2977–2989. doi: 10.1096/fasebj.6.11.1322853. [DOI] [PubMed] [Google Scholar]
  10. Heyes M. P., Saito K., Major E. O., Milstien S., Markey S. P., Vickers J. H. A mechanism of quinolinic acid formation by brain in inflammatory neurological disease. Attenuation of synthesis from L-tryptophan by 6-chlorotryptophan and 4-chloro-3-hydroxyanthranilate. Brain. 1993 Dec;116(Pt 6):1425–1450. doi: 10.1093/brain/116.6.1425. [DOI] [PubMed] [Google Scholar]
  11. Heyes M. P., Saito K., Markey S. P. Human macrophages convert L-tryptophan into the neurotoxin quinolinic acid. Biochem J. 1992 May 1;283(Pt 3):633–635. doi: 10.1042/bj2830633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Heyes M. P., Saito K., Milstien S., Schiff S. J. Quinolinic acid in tumors, hemorrhage and bacterial infections of the central nervous system in children. J Neurol Sci. 1995 Nov;133(1-2):112–118. doi: 10.1016/0022-510x(95)00164-w. [DOI] [PubMed] [Google Scholar]
  13. Major E. O., Vacante D. A. Human fetal astrocytes in culture support the growth of the neurotropic human polyomavirus, JCV. J Neuropathol Exp Neurol. 1989 Jul;48(4):425–436. doi: 10.1097/00005072-198907000-00004. [DOI] [PubMed] [Google Scholar]
  14. Milstien S., Sakai N., Brew B. J., Krieger C., Vickers J. H., Saito K., Heyes M. P. Cerebrospinal fluid nitrite/nitrate levels in neurologic diseases. J Neurochem. 1994 Sep;63(3):1178–1180. doi: 10.1046/j.1471-4159.1994.63031178.x. [DOI] [PubMed] [Google Scholar]
  15. Saito K., Chen C. Y., Masana M., Crowley J. S., Markey S. P., Heyes M. P. 4-Chloro-3-hydroxyanthranilate, 6-chlorotryptophan and norharmane attenuate quinolinic acid formation by interferon-gamma-stimulated monocytes (THP-1 cells). Biochem J. 1993 Apr 1;291(Pt 1):11–14. doi: 10.1042/bj2910011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Saito K., Crowley J. S., Markey S. P., Heyes M. P. A mechanism for increased quinolinic acid formation following acute systemic immune stimulation. J Biol Chem. 1993 Jul 25;268(21):15496–15503. [PubMed] [Google Scholar]
  17. Saito K., Markey S. P., Heyes M. P. Effects of immune activation on quinolinic acid and neuroactive kynurenines in the mouse. Neuroscience. 1992 Nov;51(1):25–39. doi: 10.1016/0306-4522(92)90467-g. [DOI] [PubMed] [Google Scholar]
  18. Saito K., Nowak T. S., Jr, Markey S. P., Heyes M. P. Mechanism of delayed increases in kynurenine pathway metabolism in damaged brain regions following transient cerebral ischemia. J Neurochem. 1993 Jan;60(1):180–192. doi: 10.1111/j.1471-4159.1993.tb05836.x. [DOI] [PubMed] [Google Scholar]
  19. Saito K., Nowak T. S., Jr, Suyama K., Quearry B. J., Saito M., Crowley J. S., Markey S. P., Heyes M. P. Kynurenine pathway enzymes in brain: responses to ischemic brain injury versus systemic immune activation. J Neurochem. 1993 Dec;61(6):2061–2070. doi: 10.1111/j.1471-4159.1993.tb07443.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES