Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Dec 1;320(Pt 2):665–671.

Ectocellular in vitro and in vivo metabolism of cADP-ribose in cerebellum.

A De Flora 1, L Guida 1, L Franco 1, E Zocchi 1, M Pestarino 1, C Usai 1, C Marchetti 1, E Fedele 1, G Fontana 1, M Raiteri 1
PMCID: PMC1217981  PMID: 8973582

Abstract

CD38, a type II transmembrane glycoprotein predominantly expressed in blood cells, is a bifunctional ectoenzyme directly involved in the metabolism of cADP-ribose (cADPR). This is a potent Ca2+ mobilizer in several types of cells. The relationship between the ectocellular site of cADPR production and its intracellular calcium-related functions is poorly understood. Cultured rat cerebellar granule cells showed both enzymic activities of CD38, ADP-ribosyl cyclase and cADPR hydrolase, at a ratio of 16 to 1 respectively, and were immunostained by the anti-(human CD38) monoclonal antibody IB4. In these cells externally added cADPR and beta-NAD+ (the precursor of cADPR), but not alpha-NAD+ or ADP-ribose, enhanced the peak of the depolarization-induced rise in intracellular Ca2+ concentration. This effect was inhibited by 1 microM ryanodine, suggesting a potentiation of calcium-induced calcium release by cADPR. CD38 ectoenzyme activities, ADP-ribosyl cyclase and cADPR hydrolase, were also demonstrated in vivo by microdialysis of adult rat cerebellum, where IB4 bound to granule neurons selectively. Trace amounts (11.5 +/- 3.8 nM) of NAD+ were detected by microdialysis sampling and sensitive assays in the basal interstitial fluid of the cerebellum. These results provide a link between ectocellular cADPR turnover and intracellular calcium mobilization in cerebellum.

Full Text

The Full Text of this article is available as a PDF (371.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amico C., Marchetti C., Nobile M., Usai C. Pharmacological types of calcium channels and their modulation by baclofen in cerebellar granules. J Neurosci. 1995 Apr;15(4):2839–2848. doi: 10.1523/JNEUROSCI.15-04-02839.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berridge M. J. Cell signalling. A tale of two messengers. Nature. 1993 Sep 30;365(6445):388–389. doi: 10.1038/365388a0. [DOI] [PubMed] [Google Scholar]
  3. Bredt D. S., Snyder S. H. Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc Natl Acad Sci U S A. 1989 Nov;86(22):9030–9033. doi: 10.1073/pnas.86.22.9030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. COONS A. H., LEDUC E. H., CONNOLLY J. M. Studies on antibody production. I. A method for the histochemical demonstration of specific antibody and its application to a study of the hyperimmune rabbit. J Exp Med. 1955 Jul 1;102(1):49–60. doi: 10.1084/jem.102.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Currie K. P., Swann K., Galione A., Scott R. H. Activation of Ca(2+)-dependent currents in cultured rat dorsal root ganglion neurones by a sperm factor and cyclic ADP-ribose. Mol Biol Cell. 1992 Dec;3(12):1415–1425. doi: 10.1091/mbc.3.12.1415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dong C., Wang J., Neame P., Cooper M. D. The murine BP-3 gene encodes a relative of the CD38/NAD glycohydrolase family. Int Immunol. 1994 Sep;6(9):1353–1360. doi: 10.1093/intimm/6.9.1353. [DOI] [PubMed] [Google Scholar]
  7. Foster G. A., Roberts P. J. Excitatory amino acid receptor stimulation: involvement of cyclic GMP? Adv Biochem Psychopharmacol. 1983;37:175–185. [PubMed] [Google Scholar]
  8. Galione A., White A., Willmott N., Turner M., Potter B. V., Watson S. P. cGMP mobilizes intracellular Ca2+ in sea urchin eggs by stimulating cyclic ADP-ribose synthesis. Nature. 1993 Sep 30;365(6445):456–459. doi: 10.1038/365456a0. [DOI] [PubMed] [Google Scholar]
  9. Garthwaite J., Garthwaite G., Palmer R. M., Moncada S. NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. Eur J Pharmacol. 1989 Oct 17;172(4-5):413–416. doi: 10.1016/0922-4106(89)90023-0. [DOI] [PubMed] [Google Scholar]
  10. Gordon J. L. Extracellular ATP: effects, sources and fate. Biochem J. 1986 Jan 15;233(2):309–319. doi: 10.1042/bj2330309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Graeff R. M., Walseth T. F., Fryxell K., Branton W. D., Lee H. C. Enzymatic synthesis and characterizations of cyclic GDP-ribose. A procedure for distinguishing enzymes with ADP-ribosyl cyclase activity. J Biol Chem. 1994 Dec 2;269(48):30260–30267. [PubMed] [Google Scholar]
  12. Gross R. A., Macdonald R. L., Ryan-Jastrow T. 2-Chloroadenosine reduces the N calcium current of cultured mouse sensory neurones in a pertussis toxin-sensitive manner. J Physiol. 1989 Apr;411:585–595. doi: 10.1113/jphysiol.1989.sp017592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  14. Guida L., Franco L., Zocchi E., De Flora A. Structural role of disulfide bridges in the cyclic ADP-ribose related bifunctional ectoenzyme CD38. FEBS Lett. 1995 Jul 24;368(3):481–484. doi: 10.1016/0014-5793(95)00715-l. [DOI] [PubMed] [Google Scholar]
  15. Hirata Y., Kimura N., Sato K., Ohsugi Y., Takasawa S., Okamoto H., Ishikawa J., Kaisho T., Ishihara K., Hirano T. ADP ribosyl cyclase activity of a novel bone marrow stromal cell surface molecule, BST-1. FEBS Lett. 1994 Dec 19;356(2-3):244–248. doi: 10.1016/0014-5793(94)01279-2. [DOI] [PubMed] [Google Scholar]
  16. Howard M., Grimaldi J. C., Bazan J. F., Lund F. E., Santos-Argumedo L., Parkhouse R. M., Walseth T. F., Lee H. C. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science. 1993 Nov 12;262(5136):1056–1059. doi: 10.1126/science.8235624. [DOI] [PubMed] [Google Scholar]
  17. Hua S. Y., Tokimasa T., Takasawa S., Furuya Y., Nohmi M., Okamoto H., Kuba K. Cyclic ADP-ribose modulates Ca2+ release channels for activation by physiological Ca2+ entry in bullfrog sympathetic neurons. Neuron. 1994 May;12(5):1073–1079. doi: 10.1016/0896-6273(94)90315-8. [DOI] [PubMed] [Google Scholar]
  18. Jackson D. G., Bell J. I. Isolation of a cDNA encoding the human CD38 (T10) molecule, a cell surface glycoprotein with an unusual discontinuous pattern of expression during lymphocyte differentiation. J Immunol. 1990 Apr 1;144(7):2811–2815. [PubMed] [Google Scholar]
  19. Kim H., Jacobson E. L., Jacobson M. K. Synthesis and degradation of cyclic ADP-ribose by NAD glycohydrolases. Science. 1993 Sep 3;261(5126):1330–1333. doi: 10.1126/science.8395705. [DOI] [PubMed] [Google Scholar]
  20. Kontani K., Nishina H., Ohoka Y., Takahashi K., Katada T. NAD glycohydrolase specifically induced by retinoic acid in human leukemic HL-60 cells. Identification of the NAD glycohydrolase as leukocyte cell surface antigen CD38. J Biol Chem. 1993 Aug 15;268(23):16895–16898. [PubMed] [Google Scholar]
  21. Kuemmerle J. F., Makhlouf G. M. Agonist-stimulated cyclic ADP ribose. Endogenous modulator of Ca(2+)-induced Ca2+ release in intestinal longitudinal muscle. J Biol Chem. 1995 Oct 27;270(43):25488–25494. doi: 10.1074/jbc.270.43.25488. [DOI] [PubMed] [Google Scholar]
  22. Lee H. C., Aarhus R. Wide distribution of an enzyme that catalyzes the hydrolysis of cyclic ADP-ribose. Biochim Biophys Acta. 1993 Jun 24;1164(1):68–74. doi: 10.1016/0167-4838(93)90113-6. [DOI] [PubMed] [Google Scholar]
  23. Lee H. C., Galione A., Walseth T. F. Cyclic ADP-ribose: metabolism and calcium mobilizing function. Vitam Horm. 1994;48:199–257. doi: 10.1016/s0083-6729(08)60499-9. [DOI] [PubMed] [Google Scholar]
  24. Lee H. C., Zocchi E., Guida L., Franco L., Benatti U., De Flora A. Production and hydrolysis of cyclic ADP-ribose at the outer surface of human erythrocytes. Biochem Biophys Res Commun. 1993 Mar 15;191(2):639–645. doi: 10.1006/bbrc.1993.1265. [DOI] [PubMed] [Google Scholar]
  25. Levi G., Aloisi F., Ciotti M. T., Gallo V. Autoradiographic localization and depolarization-induced release of acidic amino acids in differentiating cerebellar granule cell cultures. Brain Res. 1984 Jan 2;290(1):77–86. doi: 10.1016/0006-8993(84)90737-6. [DOI] [PubMed] [Google Scholar]
  26. Linden D. J., Dawson T. M., Dawson V. L. An evaluation of the nitric oxide/cGMP/cGMP-dependent protein kinase cascade in the induction of cerebellar long-term depression in culture. J Neurosci. 1995 Jul;15(7 Pt 2):5098–5105. doi: 10.1523/JNEUROSCI.15-07-05098.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Malavasi F., Funaro A., Roggero S., Horenstein A., Calosso L., Mehta K. Human CD38: a glycoprotein in search of a function. Immunol Today. 1994 Mar;15(3):95–97. doi: 10.1016/0167-5699(94)90148-1. [DOI] [PubMed] [Google Scholar]
  28. Marchetti C., Amico C., Usai C. Functional characterization of the effect of nimodipine on the calcium current in rat cerebellar granule cells. J Neurophysiol. 1995 Mar;73(3):1169–1180. doi: 10.1152/jn.1995.73.3.1169. [DOI] [PubMed] [Google Scholar]
  29. Nairn A. C., Greengard P. Cyclic GMP-dependent protein phosphorylation in mammalian brain. Fed Proc. 1983 Nov;42(14):3107–3113. [PubMed] [Google Scholar]
  30. Reinherz E. L., Kung P. C., Goldstein G., Levey R. H., Schlossman S. F. Discrete stages of human intrathymic differentiation: analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1588–1592. doi: 10.1073/pnas.77.3.1588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rusinko N., Lee H. C. Widespread occurrence in animal tissues of an enzyme catalyzing the conversion of NAD+ into a cyclic metabolite with intracellular Ca2+-mobilizing activity. J Biol Chem. 1989 Jul 15;264(20):11725–11731. [PubMed] [Google Scholar]
  32. Scholz K. P., Miller R. J. Analysis of adenosine actions on Ca2+ currents and synaptic transmission in cultured rat hippocampal pyramidal neurones. J Physiol. 1991 Apr;435:373–393. doi: 10.1113/jphysiol.1991.sp018515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Simpson P. B., Challiss R. A., Nahorski S. R. Neuronal Ca2+ stores: activation and function. Trends Neurosci. 1995 Jul;18(7):299–306. doi: 10.1016/0166-2236(95)93919-o. [DOI] [PubMed] [Google Scholar]
  34. Summerhill R. J., Jackson D. G., Galione A. Human lymphocyte antigen CD38 catalyzes the production of cyclic ADP-ribose. FEBS Lett. 1993 Dec 6;335(2):231–233. doi: 10.1016/0014-5793(93)80735-d. [DOI] [PubMed] [Google Scholar]
  35. Takahashi K., Kukimoto I., Tokita K., Inageda K., Inoue S., Kontani K., Hoshino S., Nishina H., Kanaho Y., Katada T. Accumulation of cyclic ADP-ribose measured by a specific radioimmunoassay in differentiated human leukemic HL-60 cells with all-trans-retinoic acid. FEBS Lett. 1995 Sep 4;371(2):204–208. doi: 10.1016/0014-5793(95)00914-u. [DOI] [PubMed] [Google Scholar]
  36. Takasawa S., Nata K., Yonekura H., Okamoto H. Cyclic ADP-ribose in insulin secretion from pancreatic beta cells. Science. 1993 Jan 15;259(5093):370–373. doi: 10.1126/science.8420005. [DOI] [PubMed] [Google Scholar]
  37. Takasawa S., Tohgo A., Noguchi N., Koguma T., Nata K., Sugimoto T., Yonekura H., Okamoto H. Synthesis and hydrolysis of cyclic ADP-ribose by human leukocyte antigen CD38 and inhibition of the hydrolysis by ATP. J Biol Chem. 1993 Dec 15;268(35):26052–26054. [PubMed] [Google Scholar]
  38. Tohgo A., Takasawa S., Noguchi N., Koguma T., Nata K., Sugimoto T., Furuya Y., Yonekura H., Okamoto H. Essential cysteine residues for cyclic ADP-ribose synthesis and hydrolysis by CD38. J Biol Chem. 1994 Nov 18;269(46):28555–28557. [PubMed] [Google Scholar]
  39. Vallebuona F., Raiteri M. Monitoring of cyclic GMP during cerebellar microdialysis in freely-moving rats as an index of nitric oxide synthase activity. Neuroscience. 1993 Dec;57(3):577–585. doi: 10.1016/0306-4522(93)90007-3. [DOI] [PubMed] [Google Scholar]
  40. Walseth T. F., Aarhus R., Zeleznikar R. J., Jr, Lee H. C. Determination of endogenous levels of cyclic ADP-ribose in rat tissues. Biochim Biophys Acta. 1991 Aug 13;1094(1):113–120. doi: 10.1016/0167-4889(91)90032-s. [DOI] [PubMed] [Google Scholar]
  41. White A. M., Watson S. P., Galione A. Cyclic ADP-ribose-induced Ca2+ release from rat brain microsomes. FEBS Lett. 1993 Mar 8;318(3):259–263. doi: 10.1016/0014-5793(93)80524-x. [DOI] [PubMed] [Google Scholar]
  42. Willmott N. J., Galione A., Smith P. A. Nitric oxide induces intracellular Ca2+ mobilization and increases secretion of incorporated 5-hydroxytryptamine in rat pancreatic beta-cells. FEBS Lett. 1995 Sep 4;371(2):99–104. doi: 10.1016/0014-5793(95)00848-4. [DOI] [PubMed] [Google Scholar]
  43. Willmott N., Sethi J. K., Walseth T. F., Lee H. C., White A. M., Galione A. Nitric oxide-induced mobilization of intracellular calcium via the cyclic ADP-ribose signaling pathway. J Biol Chem. 1996 Feb 16;271(7):3699–3705. doi: 10.1074/jbc.271.7.3699. [DOI] [PubMed] [Google Scholar]
  44. Zerez C. R., Lee S. J., Tanaka K. R. Spectrophotometric determination of oxidized and reduced pyridine nucleotides in erythrocytes using a single extraction procedure. Anal Biochem. 1987 Aug 1;164(2):367–373. doi: 10.1016/0003-2697(87)90506-9. [DOI] [PubMed] [Google Scholar]
  45. Zocchi E., Franco L., Guida L., Benatti U., Bargellesi A., Malavasi F., Lee H. C., De Flora A. A single protein immunologically identified as CD38 displays NAD+ glycohydrolase, ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase activities at the outer surface of human erythrocytes. Biochem Biophys Res Commun. 1993 Nov 15;196(3):1459–1465. doi: 10.1006/bbrc.1993.2416. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES