Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Dec 1;320(Pt 2):673–679. doi: 10.1042/bj3200673

Origin of hepatic very-low-density lipoprotein triacylglycerol: the contribution of cellular phospholipid.

D Wiggins 1, G F Gibbons 1
PMCID: PMC1217982  PMID: 8973583

Abstract

When rat hepatocytes were cultured for 24 h in the absence of exogenous fatty acid, the amount of very-low-density lipoprotein (VLDL) triacylglycerol (TAG) secreted (114 +/- 14 micrograms/mg of cell protein) could not be accounted for by the mass of TAG lost from the cells (29 +/- 6.1 micrograms/mg of cell protein) during this period (n = 12). Of the balance (85 +/- 14 micrograms/mg; 94 +/- 15 nmol/mg), a maximum of only 37 nmol/mg of cell protein of TAG could be accounted for by fatty acids synthesized de novo. When labelled exogenous oleate (initial concentration, 0.75 nM) was present in the culture medium, the net gain in cellular plus VLDL TAG (253 +/- 38 micrograms/mg of cell protein per 24 h) was greater than that contributed by the exogenous fatty acid (155 +/- 18.2 micrograms/mg of cell protein, n = 5). Again, the balance (98.8 +/- 18.2 micrograms/mg of cell protein per 24 h) was too great to be accounted for by fatty acid synthesis de novo. In experiments in which cellular glycerolipids were prelabelled with [9, 10(n)-3H]oleic acid, following removal of the labelled fatty acid, there was a net increase in labelled cellular plus VLDL TAG over the next 24 h. That cellular phospholipids are the source of a substantial part of the excess TAG synthesized is supported by the following evidence. (1) The loss of prelabelled cellular phospholipid during culture was greater than could be accounted for by secretion into the medium. (2) During culture of cells prelabelled with 1,2-di-[l-14C]palmitoyl phosphatidylcholine, a substantial amount of label was secreted as VLDL TAG. (3) In pulse-chase experiments, the kinetics of labelled phospholipid turnover were consistent with conversion into a non-phospholipid pool. The enzymology involved in the transfer of phospholipid fatty acids into TAG is probably complex, but the present results suggest that this pathway may represent an important route by which extracellular fatty acids are channelled into VLDL TAG.

Full Text

The Full Text of this article is available as a PDF (422.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bar-On H., Roheim P. S., Stein O., Stein Y. Contribution of floating fat triglyceride and of lecithin towards formation of secretory triglyceride in perfused rat liver. Biochim Biophys Acta. 1971 Oct 5;248(1):1–11. doi: 10.1016/0005-2760(71)90068-3. [DOI] [PubMed] [Google Scholar]
  2. Bartlett S. M., Gibbons G. F. Short- and longer-term regulation of very-low-density lipoprotein secretion by insulin, dexamethasone and lipogenic substrates in cultured hepatocytes. A biphasic effect of insulin. Biochem J. 1988 Jan 1;249(1):37–43. doi: 10.1042/bj2490037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Borchardt R. A., Davis R. A. Intrahepatic assembly of very low density lipoproteins. Rate of transport out of the endoplasmic reticulum determines rate of secretion. J Biol Chem. 1987 Dec 5;262(34):16394–16402. [PubMed] [Google Scholar]
  4. Borén J., Wettesten M., Rustaeus S., Andersson M., Olofsson S. O. The assembly and secretion of apoB-100-containing lipoproteins. Biochem Soc Trans. 1993 May;21(2):487–493. doi: 10.1042/bst0210487. [DOI] [PubMed] [Google Scholar]
  5. Cartwright I. J., Hebbachi A. M., Higgins J. A. Transit and sorting of apolipoprotein B within the endoplasmic reticulum and Golgi compartments of isolated hepatocytes from normal and orotic acid-fed rats. J Biol Chem. 1993 Oct 5;268(28):20937–20952. [PubMed] [Google Scholar]
  6. Chao F. F., Stiers D. L., Ontko J. A. Hepatocellular triglyceride synthesis and transfer to lipid droplets and nascent very low density lipoproteins. J Lipid Res. 1986 Nov;27(11):1174–1181. [PubMed] [Google Scholar]
  7. Dixon J. L., Ginsberg H. N. Regulation of hepatic secretion of apolipoprotein B-containing lipoproteins: information obtained from cultured liver cells. J Lipid Res. 1993 Feb;34(2):167–179. [PubMed] [Google Scholar]
  8. Du E. Z., Wang S. L., Kayden H. J., Sokol R., Curtiss L. K., Davis R. A. Translocation of apolipoprotein B across the endoplasmic reticulum is blocked in abetalipoproteinemia. J Lipid Res. 1996 Jun;37(6):1309–1315. [PubMed] [Google Scholar]
  9. Duerden J. M., Bartlett S. M., Gibbons G. F. Long-term maintenance of high rates of very-low-density-lipoprotein secretion in hepatocyte cultures. A model for studying the direct effects of insulin and insulin deficiency in vitro. Biochem J. 1989 Nov 1;263(3):937–943. doi: 10.1042/bj2630937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Duerden J. M., Gibbons G. F. Storage, mobilization and secretion of cytosolic triacylglycerol in hepatocyte cultures. The role of insulin. Biochem J. 1990 Dec 15;272(3):583–587. doi: 10.1042/bj2720583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Duerden J. M., Marsh B., Burnham F. J., Gibbons G. F. Regulation of hepatic synthesis and secretion of cholesterol and glycerolipids in animals maintained in different nutritional states. Biochem J. 1990 Nov 1;271(3):761–766. doi: 10.1042/bj2710761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Edelstein C., Scanu A. M. Precautionary measures for collecting blood destined for lipoprotein isolation. Methods Enzymol. 1986;128:151–155. doi: 10.1016/0076-6879(86)28065-9. [DOI] [PubMed] [Google Scholar]
  13. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  14. Gavino V. C., Miller J. S., Dillman J. M., Milo G. E., Cornwell D. G. Polyunsaturated fatty acid accumulation in the lipids of cultured fibroblasts and smooth muscle cells. J Lipid Res. 1981 Jan;22(1):57–62. [PubMed] [Google Scholar]
  15. Gibbons G. F., Bartlett S. M., Sparks C. E., Sparks J. D. Extracellular fatty acids are not utilized directly for the synthesis of very-low-density lipoprotein in primary cultures of rat hepatocytes. Biochem J. 1992 Nov 1;287(Pt 3):749–753. doi: 10.1042/bj2870749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gibbons G. F., Burnham F. J. Effect of nutritional state on the utilization of fatty acids for hepatitic triacylglycerol synthesis and secretion as very-low-density lipoprotein. Biochem J. 1991 Apr 1;275(Pt 1):87–92. doi: 10.1042/bj2750087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gibbons G. F., Khurana R., Odwell A., Seelaender M. C. Lipid balance in HepG2 cells: active synthesis and impaired mobilization. J Lipid Res. 1994 Oct;35(10):1801–1808. [PubMed] [Google Scholar]
  18. Gibbons G. F., Wiggins D. Intracellular triacylglycerol lipase: its role in the assembly of hepatic very-low-density lipoprotein (VLDL). Adv Enzyme Regul. 1995;35:179–198. doi: 10.1016/0065-2571(94)00006-o. [DOI] [PubMed] [Google Scholar]
  19. Goldfarb S., Barber T. A., Pariza M. W., Pugh T. D. Lipid synthesis and ultrastructure of adult rat hepatocytes during their first twenty-four hours in culture. Exp Cell Res. 1978 Nov;117(1):39–46. doi: 10.1016/0014-4827(78)90425-1. [DOI] [PubMed] [Google Scholar]
  20. Gretch D. G., Sturley S. L., Wang L., Lipton B. A., Dunning A., Grunwald K. A., Wetterau J. R., Yao Z., Talmud P., Attie A. D. The amino terminus of apolipoprotein B is necessary but not sufficient for microsomal triglyceride transfer protein responsiveness. J Biol Chem. 1996 Apr 12;271(15):8682–8691. doi: 10.1074/jbc.271.15.8682. [DOI] [PubMed] [Google Scholar]
  21. Kondrup J., Damgaard S. E., Fleron P. Metabolism of palmitate in perfused rat liver. Computer models of subcellular triacylglycerol metabolism. Biochem J. 1979 Oct 15;184(1):73–81. doi: 10.1042/bj1840073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  23. Lawrence J. B., Moreau P., Cassagne C., Morré D. J. Acyl transfer reactions associated with cis Golgi apparatus of rat liver. Biochim Biophys Acta. 1994 Jan 3;1210(2):146–150. doi: 10.1016/0005-2760(94)90114-7. [DOI] [PubMed] [Google Scholar]
  24. Leiper J. M., Bayliss J. D., Pease R. J., Brett D. J., Scott J., Shoulders C. C. Microsomal triglyceride transfer protein, the abetalipoproteinemia gene product, mediates the secretion of apolipoprotein B-containing lipoproteins from heterologous cells. J Biol Chem. 1994 Sep 2;269(35):21951–21954. [PubMed] [Google Scholar]
  25. Parthasarathy S., Barnett J. Phospholipase A2 activity of low density lipoprotein: evidence for an intrinsic phospholipase A2 activity of apoprotein B-100. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9741–9745. doi: 10.1073/pnas.87.24.9741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Patton G. M., Fasulo J. M., Robins S. J. Hepatic phosphatidylcholines: evidence for synthesis in the rat by extensive reutilization of endogenous acylglycerides. J Lipid Res. 1994 Jul;35(7):1211–1221. [PubMed] [Google Scholar]
  27. Reisfeld N., Lichtenberg D., Dagan A., Yedgar S. Apolipoprotein B exhibits phospholipase A1 and phospholipase A2 activities. FEBS Lett. 1993 Jan 11;315(3):267–270. doi: 10.1016/0014-5793(93)81176-z. [DOI] [PubMed] [Google Scholar]
  28. Rosenthal M. D. Selectivity in incorporation, utilization and retention of oleic and linoleic acids by human skin fibroblasts. Lipids. 1980 Oct;15(10):838–848. doi: 10.1007/BF02534374. [DOI] [PubMed] [Google Scholar]
  29. Rusiñol A. E., Chan E. Y., Vance J. E. Movement of apolipoprotein B into the lumen of microsomes from hepatocytes is disrupted in membranes enriched in phosphatidylmonomethylethanolamine. J Biol Chem. 1993 Nov 25;268(33):25168–25175. [PubMed] [Google Scholar]
  30. Rusiñol A., Verkade H., Vance J. E. Assembly of rat hepatic very low density lipoproteins in the endoplasmic reticulum. J Biol Chem. 1993 Feb 15;268(5):3555–3562. [PubMed] [Google Scholar]
  31. Schmid P. C., Johnson S. B., Schmid H. H. Remodeling of rat hepatocyte phospholipids by selective acyl turnover. J Biol Chem. 1991 Jul 25;266(21):13690–13697. [PubMed] [Google Scholar]
  32. Sharp D., Blinderman L., Combs K. A., Kienzle B., Ricci B., Wager-Smith K., Gil C. M., Turck C. W., Bouma M. E., Rader D. J. Cloning and gene defects in microsomal triglyceride transfer protein associated with abetalipoproteinaemia. Nature. 1993 Sep 2;365(6441):65–69. doi: 10.1038/365065a0. [DOI] [PubMed] [Google Scholar]
  33. Shoulders C. C., Brett D. J., Bayliss J. D., Narcisi T. M., Jarmuz A., Grantham T. T., Leoni P. R., Bhattacharya S., Pease R. J., Cullen P. M. Abetalipoproteinemia is caused by defects of the gene encoding the 97 kDa subunit of a microsomal triglyceride transfer protein. Hum Mol Genet. 1993 Dec;2(12):2109–2116. doi: 10.1093/hmg/2.12.2109. [DOI] [PubMed] [Google Scholar]
  34. Sparks J. D., Sparks C. E. Insulin regulation of triacylglycerol-rich lipoprotein synthesis and secretion. Biochim Biophys Acta. 1994 Nov 17;1215(1-2):9–32. doi: 10.1016/0005-2760(94)90088-4. [DOI] [PubMed] [Google Scholar]
  35. Spring D. J., Chen-Liu L. W., Chatterton J. E., Elovson J., Schumaker V. N. Lipoprotein assembly. Apolipoprotein B size determines lipoprotein core circumference. J Biol Chem. 1992 Jul 25;267(21):14839–14845. [PubMed] [Google Scholar]
  36. Spring D. J., Lee S. M., Puppione D. L., Phillips M., Elovson J., Schumaker V. N. Identification of a neutral lipid core in a transiently expressed and secreted lipoprotein containing an apoB-48-like apolipoprotein. J Lipid Res. 1992 Feb;33(2):233–240. [PubMed] [Google Scholar]
  37. Swift L. L. Assembly of very low density lipoproteins in rat liver: a study of nascent particles recovered from the rough endoplasmic reticulum. J Lipid Res. 1995 Mar;36(3):395–406. [PubMed] [Google Scholar]
  38. Takayama M., Itoh S., Nagasaki T., Tanimizu I. A new enzymatic method for determination of serum choline-containing phospholipids. Clin Chim Acta. 1977 Aug 15;79(1):93–98. doi: 10.1016/0009-8981(77)90465-x. [DOI] [PubMed] [Google Scholar]
  39. Van Harken D. R., Dixon C. W., Heimberg M. Hepatic lipid metabolism in experimental diabetes. V. The effect of concentration of oleate on metabolism of triglycerides and on ketogenesis. J Biol Chem. 1969 May 10;244(9):2278–2285. [PubMed] [Google Scholar]
  40. Verkade H. J., Fast D. G., Rusiñol A. E., Scraba D. G., Vance D. E. Impaired biosynthesis of phosphatidylcholine causes a decrease in the number of very low density lipoprotein particles in the Golgi but not in the endoplasmic reticulum of rat liver. J Biol Chem. 1993 Nov 25;268(33):24990–24996. [PubMed] [Google Scholar]
  41. Wiggins D., Gibbons G. F. The lipolysis/esterification cycle of hepatic triacylglycerol. Its role in the secretion of very-low-density lipoprotein and its response to hormones and sulphonylureas. Biochem J. 1992 Jun 1;284(Pt 2):457–462. doi: 10.1042/bj2840457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wilson H. M., Neumuller W., Eibl H., Welch W. H., Jr, Reitz R. C. Structural basis of the phospholipid acyltransferase enzyme substrate specificity: a computer modeling study of the phospholipid acceptor molecule. J Lipid Res. 1995 Mar;36(3):429–439. [PubMed] [Google Scholar]
  43. Yang L. Y., Kuksis A., Myher J. J., Steiner G. Origin of triacylglycerol moiety of plasma very low density lipoproteins in the rat: structural studies. J Lipid Res. 1995 Jan;36(1):125–136. [PubMed] [Google Scholar]
  44. Yao Z. M., Vance D. E. The active synthesis of phosphatidylcholine is required for very low density lipoprotein secretion from rat hepatocytes. J Biol Chem. 1988 Feb 25;263(6):2998–3004. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES