Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Dec 1;320(Pt 2):687–691. doi: 10.1042/bj3200687

The cytotoxic activity of Bacillus anthracis lethal factor is inhibited by leukotriene A4 hydrolase and metallopeptidase inhibitors.

A Menard 1, E Papini 1, M Mock 1, C Montecucco 1
PMCID: PMC1217984  PMID: 8973585

Abstract

The lethal factor of Bacillus anthracis is central to the pathogenesis of anthrax. Its mechanism of action is still unknown. Recently, on the basis of sequence similarities, we suggested that lethal factor might act similarly to leukotriene A4 hydrolase (LTA4), a bifunctional enzyme also endowed with a metallopeptidase activity. Here we show that some inhibitors of the LTA4 hydrolase and metallopeptidase activities of LTA4 hydrolase also affect the cytotoxicity of the anthrax lethal factor on macrophage cell lines, without interfering with the ability of the lethal factor to enter cells. These results support the proposal that anthrax lethal factor might display in the cytosol of intoxicated cells a peptidase activity similar to that of LTA4 hydrolase.

Full Text

The Full Text of this article is available as a PDF (310.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dixon R. A., Diehl R. E., Opas E., Rands E., Vickers P. J., Evans J. F., Gillard J. W., Miller D. K. Requirement of a 5-lipoxygenase-activating protein for leukotriene synthesis. Nature. 1990 Jan 18;343(6255):282–284. doi: 10.1038/343282a0. [DOI] [PubMed] [Google Scholar]
  2. Evans J. F., Kargman S. Bestatin inhibits covalent coupling of [3H]LTA4 to human leukocyte LTA4 hydrolase. FEBS Lett. 1992 Feb 3;297(1-2):139–142. doi: 10.1016/0014-5793(92)80345-h. [DOI] [PubMed] [Google Scholar]
  3. Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
  4. Friedlander A. M. Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J Biol Chem. 1986 Jun 5;261(16):7123–7126. [PubMed] [Google Scholar]
  5. Gillard J., Ford-Hutchinson A. W., Chan C., Charleson S., Denis D., Foster A., Fortin R., Leger S., McFarlane C. S., Morton H. L-663,536 (MK-886) (3-[1-(4-chlorobenzyl)-3-t-butyl-thio-5-isopropylindol-2-yl]-2,2 - dimethylpropanoic acid), a novel, orally active leukotriene biosynthesis inhibitor. Can J Physiol Pharmacol. 1989 May;67(5):456–464. doi: 10.1139/y89-073. [DOI] [PubMed] [Google Scholar]
  6. Hanna P. C., Acosta D., Collier R. J. On the role of macrophages in anthrax. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10198–10201. doi: 10.1073/pnas.90.21.10198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hanna P. C., Kochi S., Collier R. J. Biochemical and physiological changes induced by anthrax lethal toxin in J774 macrophage-like cells. Mol Biol Cell. 1992 Nov;3(11):1269–1277. doi: 10.1091/mbc.3.11.1269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hanna P. C., Kruskal B. A., Ezekowitz R. A., Bloom B. R., Collier R. J. Role of macrophage oxidative burst in the action of anthrax lethal toxin. Mol Med. 1994 Nov;1(1):7–18. [PMC free article] [PubMed] [Google Scholar]
  9. Hansen M. B., Nielsen S. E., Berg K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods. 1989 May 12;119(2):203–210. doi: 10.1016/0022-1759(89)90397-9. [DOI] [PubMed] [Google Scholar]
  10. Harbeson S. L., Rich D. H. Inhibition of arginine aminopeptidase by bestatin and arphamenine analogues. Evidence for a new mode of binding to aminopeptidases. Biochemistry. 1988 Sep 20;27(19):7301–7310. doi: 10.1021/bi00419a019. [DOI] [PubMed] [Google Scholar]
  11. Kitabgi P., Dubuc I., Nouel D., Costentin J., Cuber J. C., Fulcrand H., Doulut S., Rodriguez M., Martinez J. Effects of thiorphan, bestatin and a novel metallopeptidase inhibitor JMV 390-1 on the recovery of neurotensin and neuromedin N released from mouse hypothalamus. Neurosci Lett. 1992 Aug 17;142(2):200–204. doi: 10.1016/0304-3940(92)90373-f. [DOI] [PubMed] [Google Scholar]
  12. Klimpel K. R., Arora N., Leppla S. H. Anthrax toxin lethal factor contains a zinc metalloprotease consensus sequence which is required for lethal toxin activity. Mol Microbiol. 1994 Sep;13(6):1093–1100. doi: 10.1111/j.1365-2958.1994.tb00500.x. [DOI] [PubMed] [Google Scholar]
  13. Kochi S. K., Martin I., Schiavo G., Mock M., Cabiaux V. The effects of pH on the interaction of anthrax toxin lethal and edema factors with phospholipid vesicles. Biochemistry. 1994 Mar 8;33(9):2604–2609. doi: 10.1021/bi00175a032. [DOI] [PubMed] [Google Scholar]
  14. Kochi S. K., Schiavo G., Mock M., Montecucco C. Zinc content of the Bacillus anthracis lethal factor. FEMS Microbiol Lett. 1994 Dec 15;124(3):343–348. doi: 10.1111/j.1574-6968.1994.tb07306.x. [DOI] [PubMed] [Google Scholar]
  15. Labaudinière R., Hendel W., Terlain B., Cavy F., Marquis O., Dereu N. omega-[(4-Phenyl-2-quinolyl)oxy]alkanoic acid derivatives: a new family of potent LTB4 antagonists. J Med Chem. 1992 Nov 13;35(23):4306–4314. doi: 10.1021/jm00101a007. [DOI] [PubMed] [Google Scholar]
  16. Labaudinière R., Hilboll G., Leon-Lomeli A., Lautenschläger H. H., Parnham M., Kuhl P., Dereu N. Omega-[(omega-arylalkyl)aryl]alkanoic acids: a new class of specific LTA4 hydrolase inhibitors. J Med Chem. 1992 Aug 21;35(17):3156–3169. doi: 10.1021/jm00095a010. [DOI] [PubMed] [Google Scholar]
  17. Lecomte J. M., Costentin J., Vlaiculescu A., Chaillet P., Marcais-Collado H., Llorens-Cortes C., Leboyer M., Schwartz J. C. Pharmacological properties of acetorphan, a parenterally active "enkephalinase" inhibitor. J Pharmacol Exp Ther. 1986 Jun;237(3):937–944. [PubMed] [Google Scholar]
  18. Leppla S. H. Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc Natl Acad Sci U S A. 1982 May;79(10):3162–3166. doi: 10.1073/pnas.79.10.3162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Medina J. F., Wetterholm A., Rådmark O., Shapiro R., Haeggström J. Z., Vallee B. L., Samuelsson B. Leukotriene A4 hydrolase: determination of the three zinc-binding ligands by site-directed mutagenesis and zinc analysis. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7620–7624. doi: 10.1073/pnas.88.17.7620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Montecucco C., Schiavo G. Structure and function of tetanus and botulinum neurotoxins. Q Rev Biophys. 1995 Nov;28(4):423–472. doi: 10.1017/s0033583500003292. [DOI] [PubMed] [Google Scholar]
  21. Orning L., Gierse J. K., Fitzpatrick F. A. The bifunctional enzyme leukotriene-A4 hydrolase is an arginine aminopeptidase of high efficiency and specificity. J Biol Chem. 1994 Apr 15;269(15):11269–11273. [PubMed] [Google Scholar]
  22. Orning L., Krivi G., Bild G., Gierse J., Aykent S., Fitzpatrick F. A. Inhibition of leukotriene A4 hydrolase/aminopeptidase by captopril. J Biol Chem. 1991 Sep 5;266(25):16507–16511. [PubMed] [Google Scholar]
  23. Orning L., Krivi G., Fitzpatrick F. A. Leukotriene A4 hydrolase. Inhibition by bestatin and intrinsic aminopeptidase activity establish its functional resemblance to metallohydrolase enzymes. J Biol Chem. 1991 Jan 25;266(3):1375–1378. [PubMed] [Google Scholar]
  24. Pezard C., Duflot E., Mock M. Construction of Bacillus anthracis mutant strains producing a single toxin component. J Gen Microbiol. 1993 Oct;139(10):2459–2463. doi: 10.1099/00221287-139-10-2459. [DOI] [PubMed] [Google Scholar]
  25. Rouzer C. A., Ford-Hutchinson A. W., Morton H. E., Gillard J. W. MK886, a potent and specific leukotriene biosynthesis inhibitor blocks and reverses the membrane association of 5-lipoxygenase in ionophore-challenged leukocytes. J Biol Chem. 1990 Jan 25;265(3):1436–1442. [PubMed] [Google Scholar]
  26. Samuelsson B., Funk C. D. Enzymes involved in the biosynthesis of leukotriene B4. J Biol Chem. 1989 Nov 25;264(33):19469–19472. [PubMed] [Google Scholar]
  27. Tronrud D. E., Roderick S. L., Matthews B. W. Structural basis for the action of thermolysin. Matrix Suppl. 1992;1:107–111. [PubMed] [Google Scholar]
  28. Wallace J. L., MacNaughton W. K., Morris G. P., Beck P. L. Inhibition of leukotriene synthesis markedly accelerates healing in a rat model of inflammatory bowel disease. Gastroenterology. 1989 Jan;96(1):29–36. doi: 10.1016/0016-5085(89)90760-9. [DOI] [PubMed] [Google Scholar]
  29. Wetterholm A., Medina J. F., Rådmark O., Shapiro R., Haeggström J. Z., Vallee B. L., Samuelsson B. Leukotriene A4 hydrolase: abrogation of the peptidase activity by mutation of glutamic acid-296. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9141–9145. doi: 10.1073/pnas.89.19.9141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yuan W., Munoz B., Wong C. H., Haeggström J. Z., Wetterholm A., Samuelsson B. Development of selective tight-binding inhibitors of leukotriene A4 hydrolase. J Med Chem. 1993 Jan 22;36(2):211–220. doi: 10.1021/jm00054a004. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES