Abstract
This review is concerned with the structure and function of the quinoprotein enzymes, sometimes called quinoenzymes. These have prosthetic groups containing quinones, the name thus being analogous to the flavoproteins containing flavin prosthetic groups. Pyrrolo-quinoline quinone (PQQ) is non-covalently attached, whereas tryptophan tryptophylquinone (TTQ), topaquinone (TPQ) and lysine tyrosylquinone (LTQ) are derived from amino acid residues in the backbone of the enzymes. The mechanisms of the quinoproteins are reviewed and related to their recently determined three-dimensional structures. As expected, the quinone structures in the prosthetic groups play important roles in the mechanisms. A second common feature is the presence of a catalytic base (aspartate) at the active site which initiates the reactions by abstracting a proton from the substrate, and it is likely to be involved in multiple reactions in the mechanism. A third common feature of these enzymes is that the first part of the reaction produces a reduced prosthetic group; this part of the mechanism is fairly well understood. This is followed by an oxidative phase involving electron transfer reactions which remain poorly understood. In both types of dehydrogenase (containing PQQ and TTQ), electrons must pass from the reduced prosthetic group to redox centres in a second recipient protein (or protein domain), whereas in amine oxidases (containing TPQ or LTQ), electrons must be transferred to molecular oxygen by way of a redox-active copper ion in the protein.
Full Text
The Full Text of this article is available as a PDF (789.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams G. W., Mayer P., Medzihradszky K. F., Burlingame A. L. Mass spectrometric studies of the primary sequence and structure of bovine liver and serum amine oxidase. Methods Enzymol. 1995;258:90–114. doi: 10.1016/0076-6879(95)58039-5. [DOI] [PubMed] [Google Scholar]
- Anthony C. Bacterial oxidation of methane and methanol. Adv Microb Physiol. 1986;27:113–210. doi: 10.1016/s0065-2911(08)60305-7. [DOI] [PubMed] [Google Scholar]
- Anthony C., Ghosh M., Blake C. C. The structure and function of methanol dehydrogenase and related quinoproteins containing pyrrolo-quinoline quinone. Biochem J. 1994 Dec 15;304(Pt 3):665–674. doi: 10.1042/bj3040665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anthony C., Ghosh M., Blake C. C. The structure and function of methanol dehydrogenase and related quinoproteins containing pyrrolo-quinoline quinone. Biochem J. 1994 Dec 15;304(Pt 3):665–674. doi: 10.1042/bj3040665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anthony C. The c-type cytochromes of methylotrophic bacteria. Biochim Biophys Acta. 1992 Jan 30;1099(1):1–15. [PubMed] [Google Scholar]
- Anthony C., Zatman L. J. The microbial oxidation of methanol. The prosthetic group of the alcohol dehydrogenase of Pseudomonas sp. M27: a new oxidoreductase prosthetic group. Biochem J. 1967 Sep;104(3):960–969. doi: 10.1042/bj1040960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Avezoux A., Goodwin M. G., Anthony C. The role of the novel disulphide ring in the active site of the quinoprotein methanol dehydrogenase from Methylobacterium extorquens. Biochem J. 1995 May 1;307(Pt 3):735–741. doi: 10.1042/bj3070735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Backes G., Davidson V. L., Huitema F., Duine J. A., Sanders-Loehr J. Characterization of the tryptophan-derived quinone cofactor of methylamine dehydrogenase by resonance Raman spectroscopy. Biochemistry. 1991 Sep 24;30(38):9201–9210. doi: 10.1021/bi00102a011. [DOI] [PubMed] [Google Scholar]
- Baker G. J., Knowles P. F., Pandeya K. B., Rayner J. B. Electron nuclear double-resonance (ENDOR) spectroscopy of amine oxidase from pig plasma. Biochem J. 1986 Jul 15;237(2):609–612. doi: 10.1042/bj2370609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barker R., Boden N., Cayley G., Charlton S. C., Henson R., Holmes M. C., Kelly I. D., Knowles P. F. Properties of cupric ions in benzylamine oxidase from pig plasma as studied by magnetic-resonance and kinetic methods. Biochem J. 1979 Jan 1;177(1):289–302. doi: 10.1042/bj1770289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bishop G. R., Brooks H. B., Davidson V. L. Evidence for a tryptophan tryptophylquinone aminosemiquinone intermediate in the physiologic reaction between methylamine dehydrogenase and amicyanin. Biochemistry. 1996 Jul 9;35(27):8948–8954. doi: 10.1021/bi960404x. [DOI] [PubMed] [Google Scholar]
- Blake C. C., Ghosh M., Harlos K., Avezoux A., Anthony C. The active site of methanol dehydrogenase contains a disulphide bridge between adjacent cysteine residues. Nat Struct Biol. 1994 Feb;1(2):102–105. doi: 10.1038/nsb0294-102. [DOI] [PubMed] [Google Scholar]
- Brooks H. B., Davidson V. L. Kinetic and thermodynamic analysis of a physiologic intermolecular electron-transfer reaction between methylamine dehydrogenase and amicyanin. Biochemistry. 1994 May 17;33(19):5696–5701. doi: 10.1021/bi00185a005. [DOI] [PubMed] [Google Scholar]
- Brooks H. B., Jones L. H., Davidson V. L. Deuterium kinetic isotope effect and stopped-flow kinetic studies of the quinoprotein methylamine dehydrogenase. Biochemistry. 1993 Mar 16;32(10):2725–2729. doi: 10.1021/bi00061a034. [DOI] [PubMed] [Google Scholar]
- Brown D. E., McGuirl M. A., Dooley D. M., Janes S. M., Mu D., Klinman J. P. The organic functional group in copper-containing amine oxidases. Resonance Raman spectra are consistent with the presence of topa quinone (6-hydroxydopa quinone) in the active site. J Biol Chem. 1991 Mar 5;266(7):4049–4051. [PubMed] [Google Scholar]
- Bushnell G. W., Louie G. V., Brayer G. D. High-resolution three-dimensional structure of horse heart cytochrome c. J Mol Biol. 1990 Jul 20;214(2):585–595. doi: 10.1016/0022-2836(90)90200-6. [DOI] [PubMed] [Google Scholar]
- Buurman E. T., ten Voorde G. J., Teixeira de Mattos M. J. The physiological function of periplasmic glucose oxidation in phosphate-limited chemostat cultures of Klebsiella pneumoniae NCTC 418. Microbiology. 1994 Sep;140(Pt 9):2451–2458. doi: 10.1099/13500872-140-9-2451. [DOI] [PubMed] [Google Scholar]
- Chan H. T., Anthony C. The interaction of methanol dehydrogenase and cytochrome cL in the acidophilic methylotroph Acetobacter methanolicus. Biochem J. 1991 Nov 15;280(Pt 1):139–146. doi: 10.1042/bj2800139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen L. Y., Mathews F. S., Davidson V. L., Huizinga E. G., Vellieux F. M., Duine J. A., Hol W. G. Crystallographic investigations of the tryptophan-derived cofactor in the quinoprotein methylamine dehydrogenase. FEBS Lett. 1991 Aug 5;287(1-2):163–166. doi: 10.1016/0014-5793(91)80041-z. [DOI] [PubMed] [Google Scholar]
- Chen L., Durley R. C., Mathews F. S., Davidson V. L. Structure of an electron transfer complex: methylamine dehydrogenase, amicyanin, and cytochrome c551i. Science. 1994 Apr 1;264(5155):86–90. doi: 10.1126/science.8140419. [DOI] [PubMed] [Google Scholar]
- Chen L., Durley R., Poliks B. J., Hamada K., Chen Z., Mathews F. S., Davidson V. L., Satow Y., Huizinga E., Vellieux F. M. Crystal structure of an electron-transfer complex between methylamine dehydrogenase and amicyanin. Biochemistry. 1992 Jun 2;31(21):4959–4964. doi: 10.1021/bi00136a006. [DOI] [PubMed] [Google Scholar]
- Chen L., Mathews F. S., Davidson V. L., Huizinga E. G., Vellieux F. M., Hol W. G. Three-dimensional structure of the quinoprotein methylamine dehydrogenase from Paracoccus denitrificans determined by molecular replacement at 2.8 A resolution. Proteins. 1992 Oct;14(2):288–299. doi: 10.1002/prot.340140214. [DOI] [PubMed] [Google Scholar]
- Chistoserdov A. Y., Tsygankov Y. D., Lidstrom M. E. Cloning and sequencing of the structural gene for the small subunit of methylamine dehydrogenase from Methylobacterium extorquens AM1: evidence for two tryptophan residues involved in the active center. Biochem Biophys Res Commun. 1990 Oct 15;172(1):211–216. doi: 10.1016/s0006-291x(05)80195-0. [DOI] [PubMed] [Google Scholar]
- Cox J. M., Day D. J., Anthony C. The interaction of methanol dehydrogenase and its electron acceptor, cytochrome cL in methylotrophic bacteria. Biochim Biophys Acta. 1992 Feb 13;1119(1):97–106. doi: 10.1016/0167-4838(92)90240-e. [DOI] [PubMed] [Google Scholar]
- Cozier G. E., Anthony C. Structure of the quinoprotein glucose dehydrogenase of Escherichia coli modelled on that of methanol dehydrogenase from Methylobacterium extorquens. Biochem J. 1995 Dec 15;312(Pt 3):679–685. doi: 10.1042/bj3120679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cozier G. E., Giles I. G., Anthony C. The structure of the quinoprotein alcohol dehydrogenase of Acetobacter aceti modelled on that of methanol dehydrogenase from Methylobacterium extorquens. Biochem J. 1995 Jun 1;308(Pt 2):375–379. doi: 10.1042/bj3080375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dales S. L., Anthony C. The interaction of methanol dehydrogenase and its cytochrome electron acceptor. Biochem J. 1995 Nov 15;312(Pt 1):261–265. doi: 10.1042/bj3120261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davidson V. L., Brooks H. B., Graichen M. E., Jones L. H., Hyun Y. L. Detection of intermediates in tryptophan tryptophylquinone enzymes. Methods Enzymol. 1995;258:176–190. doi: 10.1016/0076-6879(95)58046-8. [DOI] [PubMed] [Google Scholar]
- Davidson V. L., Jones L. H. Cofactor-directed inactivation by nucleophilic amines of the quinoprotein methylamine dehydrogenase from Paracoccus denitrificans. Biochim Biophys Acta. 1992 May 22;1121(1-2):104–110. doi: 10.1016/0167-4838(92)90343-c. [DOI] [PubMed] [Google Scholar]
- Davidson V. L., Jones L. H., Graichen M. E. Reactions of benzylamines with methylamine dehydrogenase. Evidence for a carbanionic reaction intermediate and reaction mechanism similar to eukaryotic quinoproteins. Biochemistry. 1992 Apr 7;31(13):3385–3390. doi: 10.1021/bi00128a012. [DOI] [PubMed] [Google Scholar]
- Davidson V. L. Steady-state kinetic analysis of the quinoprotein methylamine dehydrogenase from Paracoccus denitrificans. Biochem J. 1989 Jul 1;261(1):107–111. doi: 10.1042/bj2610107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dekker R. H., Duine J. A., Frank J., Verwiel P. E., Westerling J. Covalent addition of H2O, enzyme substrates and activators to pyrrolo-quinoline quinone, the coenzyme of quinoproteins. Eur J Biochem. 1982 Jun 15;125(1):69–73. doi: 10.1111/j.1432-1033.1982.tb06652.x. [DOI] [PubMed] [Google Scholar]
- Dijkstra M., Frank J., Jr, Duine J. A. Studies on electron transfer from methanol dehydrogenase to cytochrome cL, both purified from Hyphomicrobium X. Biochem J. 1989 Jan 1;257(1):87–94. doi: 10.1042/bj2570087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dooley D. M., Brown D. E. Resonance Raman spectroscopy of quinoproteins. Methods Enzymol. 1995;258:132–140. doi: 10.1016/0076-6879(95)58042-5. [DOI] [PubMed] [Google Scholar]
- Dooley D. M., McGuirl M. A., Brown D. E., Turowski P. N., McIntire W. S., Knowles P. F. A Cu(I)-semiquinone state in substrate-reduced amine oxidases. Nature. 1991 Jan 17;349(6306):262–264. doi: 10.1038/349262a0. [DOI] [PubMed] [Google Scholar]
- Dooley D. M., McGuirl M. A., Peisach J., McCracken J. The generation of an organic free radical in substrate-reduced pig kidney diamine oxidase-cyanide. FEBS Lett. 1987 Apr 20;214(2):274–278. doi: 10.1016/0014-5793(87)80069-8. [DOI] [PubMed] [Google Scholar]
- Duine J. A., Frank J., Jongejan J. A. Enzymology of quinoproteins. Adv Enzymol Relat Areas Mol Biol. 1987;59:169–212. doi: 10.1002/9780470123058.ch4. [DOI] [PubMed] [Google Scholar]
- Duine J. A., Frank J., Jr Studies on methanol dehydrogenase from Hyphomicrobium X. Isolation of an oxidized form of the enzyme. Biochem J. 1980 Apr 1;187(1):213–219. doi: 10.1042/bj1870213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duine J. A., Frank J., Jr The prosthetic group of methanol dehydrogenase. Purification and some of its properties. Biochem J. 1980 Apr 1;187(1):221–226. doi: 10.1042/bj1870221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duine J. A., Frank J., Verwiel P. E. Structure and activity of the prosthetic group of methanol dehydrogenase. Eur J Biochem. 1980;108(1):187–192. doi: 10.1111/j.1432-1033.1980.tb04711.x. [DOI] [PubMed] [Google Scholar]
- Duine J. A., Frank J., Westerling J. Purification and properties of methanol dehydrogenase from Hyphomicrobium x. Biochim Biophys Acta. 1978 Jun 9;524(2):277–287. doi: 10.1016/0005-2744(78)90164-x. [DOI] [PubMed] [Google Scholar]
- Duine J. A. Quinoproteins: enzymes containing the quinonoid cofactor pyrroloquinoline quinone, topaquinone or tryptophan-tryptophan quinone. Eur J Biochem. 1991 Sep 1;200(2):271–284. doi: 10.1111/j.1432-1033.1991.tb16183.x. [DOI] [PubMed] [Google Scholar]
- Eady R. R., Large P. J. Microbial oxidation of amines. Spectral and kinetic properties of the primary amine dehydrogenase of Pseudomonas AM1. Biochem J. 1971 Aug;123(5):757–771. doi: 10.1042/bj1230757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eady R. R., Large P. J. Purification and properties of an amine dehydrogenase from Pseudomonas AM1 and its role in growth on methylamine. Biochem J. 1968 Jan;106(1):245–255. doi: 10.1042/bj1060245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farnum M., Palcic M., Klinman J. P. pH dependence of deuterium isotope effects and tritium exchange in the bovine plasma amine oxidase reaction: a role for single-base catalysis in amine oxidation and imine exchange. Biochemistry. 1986 Apr 22;25(8):1898–1904. doi: 10.1021/bi00356a010. [DOI] [PubMed] [Google Scholar]
- Forrest H. S., Salisbury S. A., Kilty C. G. A mechanism for the enzymic oxidation of methanol involving methoxatin. Biochem Biophys Res Commun. 1980 Nov 17;97(1):248–251. doi: 10.1016/s0006-291x(80)80161-6. [DOI] [PubMed] [Google Scholar]
- Frank J., Jr, Dijkstra M., Duine J. A., Balny C. Kinetic and spectral studies on the redox forms of methanol dehydrogenase from Hyphomicrobium X. Eur J Biochem. 1988 Jun 1;174(2):331–338. doi: 10.1111/j.1432-1033.1988.tb14102.x. [DOI] [PubMed] [Google Scholar]
- Frank J., Jr, van Krimpen S. H., Verwiel P. E., Jongejan J. A., Mulder A. C., Duine J. A. On the mechanism of inhibition of methanol dehydrogenase by cyclopropane-derived inhibitors. Eur J Biochem. 1989 Sep 1;184(1):187–195. doi: 10.1111/j.1432-1033.1989.tb15006.x. [DOI] [PubMed] [Google Scholar]
- Frank J., Jr, van Krimpen S. H., Verwiel P. E., Jongejan J. A., Mulder A. C., Duine J. A. On the mechanism of inhibition of methanol dehydrogenase by cyclopropane-derived inhibitors. Eur J Biochem. 1989 Sep 1;184(1):187–195. doi: 10.1111/j.1432-1033.1989.tb15006.x. [DOI] [PubMed] [Google Scholar]
- Frébort I., Pec P., Luhová L., Toyama H., Matsushita K., Hirota S., Kitagawa T., Ueno T., Asano Y., Kato Y. Two amine oxidases from Aspergillus niger AKU 3302 contain topa quinone as the cofactor: unusual cofactor link to the glutamyl residue occurs only at one of the enzymes. Biochim Biophys Acta. 1996 Jun 7;1295(1):59–72. doi: 10.1016/0167-4838(96)00014-3. [DOI] [PubMed] [Google Scholar]
- Ghosh M., Anthony C., Harlos K., Goodwin M. G., Blake C. The refined structure of the quinoprotein methanol dehydrogenase from Methylobacterium extorquens at 1.94 A. Structure. 1995 Feb 15;3(2):177–187. doi: 10.1016/s0969-2126(01)00148-4. [DOI] [PubMed] [Google Scholar]
- Goodwin M. G., Anthony C. Characterization of a novel methanol dehydrogenase containing a Ba2+ ion at the active site. Biochem J. 1996 Sep 1;318(Pt 2):673–679. doi: 10.1042/bj3180673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodwin P. M., Anthony C. The biosynthesis of periplasmic electron transport proteins in methylotrophic bacteria. Microbiology. 1995 May;141(Pt 5):1051–1064. doi: 10.1099/13500872-141-5-1051. [DOI] [PubMed] [Google Scholar]
- Govindaraj S., Eisenstein E., Jones L. H., Sanders-Loehr J., Chistoserdov A. Y., Davidson V. L., Edwards S. L. Aromatic amine dehydrogenase, a second tryptophan tryptophylquinone enzyme. J Bacteriol. 1994 May;176(10):2922–2929. doi: 10.1128/jb.176.10.2922-2929.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grant K. L., Klinman J. P. Evidence that both protium and deuterium undergo significant tunneling in the reaction catalyzed by bovine serum amine oxidase. Biochemistry. 1989 Aug 8;28(16):6597–6605. doi: 10.1021/bi00442a010. [DOI] [PubMed] [Google Scholar]
- Gray K. A., Davidson V. L., Knaff D. B. Complex formation between methylamine dehydrogenase and amicyanin from Paracoccus denitrificans. J Biol Chem. 1988 Oct 5;263(28):13987–13990. [PubMed] [Google Scholar]
- HAUGE J. G. GLUCOSE DEHYDROGENASE OF BACTERIUM ANITRATUM: AN ENZYME WITH A NOVEL PROSTHETIC GROUP. J Biol Chem. 1964 Nov;239:3630–3639. [PubMed] [Google Scholar]
- Harris T. K., Davidson V. L. Binding and electron transfer reactions between methanol dehydrogenase and its physiologic electron acceptor cytochrome c-551i: a kinetic and thermodynamic analysis. Biochemistry. 1993 Dec 28;32(51):14145–14150. doi: 10.1021/bi00214a011. [DOI] [PubMed] [Google Scholar]
- Harris T. K., Davidson V. L., Chen L., Mathews F. S., Xia Z. X. Ionic strength dependence of the reaction between methanol dehydrogenase and cytochrome c-551i: evidence of conformationally coupled electron transfer. Biochemistry. 1994 Oct 25;33(42):12600–12608. doi: 10.1021/bi00208a010. [DOI] [PubMed] [Google Scholar]
- Harris T. K., Davidson V. L. Replacement of enzyme-bound calcium with strontium alters the kinetic properties of methanol dehydrogenase. Biochem J. 1994 May 15;300(Pt 1):175–182. doi: 10.1042/bj3000175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartmann C., Brzovic P., Klinman J. P. Spectroscopic detection of chemical intermediates in the reaction of para-substituted benzylamines with bovine serum amine oxidase. Biochemistry. 1993 Mar 9;32(9):2234–2241. doi: 10.1021/bi00060a015. [DOI] [PubMed] [Google Scholar]
- Hartmann C., Dooley D. M. Detection of reaction intermediates in topa quinone enzymes. Methods Enzymol. 1995;258:69–90. doi: 10.1016/0076-6879(95)58038-7. [DOI] [PubMed] [Google Scholar]
- Hartmann C., Klinman J. P. Reductive trapping of substrate to bovine plasma amine oxidase. J Biol Chem. 1987 Jan 25;262(3):962–965. [PubMed] [Google Scholar]
- Hartmann C., Klinman J. P. Structure-function studies of substrate oxidation by bovine serum amine oxidase: relationship to cofactor structure and mechanism. Biochemistry. 1991 May 7;30(18):4605–4611. doi: 10.1021/bi00232a035. [DOI] [PubMed] [Google Scholar]
- Huizinga E. G., van Zanten B. A., Duine J. A., Jongejan J. A., Huitema F., Wilson K. S., Hol W. G. Active site structure of methylamine dehydrogenase: hydrazines identify C6 as the reactive site of the tryptophan-derived quinone cofactor. Biochemistry. 1992 Oct 13;31(40):9789–9795. doi: 10.1021/bi00155a036. [DOI] [PubMed] [Google Scholar]
- Husain M., Davidson V. L. Purification and properties of methylamine dehydrogenase from Paracoccus denitrificans. J Bacteriol. 1987 Apr;169(4):1712–1717. doi: 10.1128/jb.169.4.1712-1717.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hyun Y. L., Davidson V. L. Mechanistic studies of aromatic amine dehydrogenase, a tryptophan tryptophylquinone enzyme. Biochemistry. 1995 Jan 24;34(3):816–823. doi: 10.1021/bi00003a015. [DOI] [PubMed] [Google Scholar]
- Hyun Y. L., Davidson V. L. Unusually large isotope effect for the reaction of aromatic amine dehydrogenase. A common feature of quinoproteins? Biochim Biophys Acta. 1995 Sep 6;1251(2):198–200. doi: 10.1016/0167-4838(95)00117-d. [DOI] [PubMed] [Google Scholar]
- Inoue T., Sunagawa M., Mori A., Imai C., Fukuda M., Takagi M., Yano K. Cloning and sequencing of the gene encoding the 72-kilodalton dehydrogenase subunit of alcohol dehydrogenase from Acetobacter aceti. J Bacteriol. 1989 Jun;171(6):3115–3122. doi: 10.1128/jb.171.6.3115-3122.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Janes S. M., Klinman J. P. An investigation of bovine serum amine oxidase active site stoichiometry: evidence for an aminotransferase mechanism involving two carbonyl cofactors per enzyme dimer. Biochemistry. 1991 May 7;30(18):4599–4605. doi: 10.1021/bi00232a034. [DOI] [PubMed] [Google Scholar]
- Janes S. M., Klinman J. P. Isolation of 2,4,5-trihydroxyphenylalanine quinone (topa quinone) from copper amine oxidases. Methods Enzymol. 1995;258:20–34. doi: 10.1016/0076-6879(95)58034-4. [DOI] [PubMed] [Google Scholar]
- Janes S. M., Mu D., Wemmer D., Smith A. J., Kaur S., Maltby D., Burlingame A. L., Klinman J. P. A new redox cofactor in eukaryotic enzymes: 6-hydroxydopa at the active site of bovine serum amine oxidase. Science. 1990 May 25;248(4958):981–987. doi: 10.1126/science.2111581. [DOI] [PubMed] [Google Scholar]
- Janes S. M., Palcic M. M., Scaman C. H., Smith A. J., Brown D. E., Dooley D. M., Mure M., Klinman J. P. Identification of topaquinone and its consensus sequence in copper amine oxidases. Biochemistry. 1992 Dec 8;31(48):12147–12154. doi: 10.1021/bi00163a025. [DOI] [PubMed] [Google Scholar]
- Kagan H. M., Trackman P. C. Properties and function of lysyl oxidase. Am J Respir Cell Mol Biol. 1991 Sep;5(3):206–210. doi: 10.1165/ajrcmb/5.3.206. [DOI] [PubMed] [Google Scholar]
- Kenney W. C., McIntire W. Characterization of methylamine dehydrogenase from bacterium W3A1. Interaction with reductants and amino-containing compounds. Biochemistry. 1983 Aug 2;22(16):3858–3868. doi: 10.1021/bi00285a022. [DOI] [PubMed] [Google Scholar]
- Klinman J. P., Mu D. Quinoenzymes in biology. Annu Rev Biochem. 1994;63:299–344. doi: 10.1146/annurev.bi.63.070194.001503. [DOI] [PubMed] [Google Scholar]
- Kumar V., Dooley D. M., Freeman H. C., Guss J. M., Harvey I., McGuirl M. A., Wilce M. C., Zubak V. M. Crystal structure of a eukaryotic (pea seedling) copper-containing amine oxidase at 2.2 A resolution. Structure. 1996 Aug 15;4(8):943–955. doi: 10.1016/s0969-2126(96)00101-3. [DOI] [PubMed] [Google Scholar]
- Lindström A., Olsson B., Petterson G. Effect of azide on some spectral and kinetic properties of pig-plasma benzylamine oxidase. Eur J Biochem. 1974 Oct 1;48(1):237–243. doi: 10.1111/j.1432-1033.1974.tb03761.x. [DOI] [PubMed] [Google Scholar]
- Lovenberg W., Beaven M. A. The release of tritium upon deamination of 3,4-dihydroxy (2-3H) phenylethylamine by plasma amine oxidase. Biochim Biophys Acta. 1971 Nov 13;250(2):452–455. doi: 10.1016/0005-2744(71)90203-8. [DOI] [PubMed] [Google Scholar]
- Mathews F. S. X-ray studies of quinoproteins. Methods Enzymol. 1995;258:191–216. doi: 10.1016/0076-6879(95)58047-6. [DOI] [PubMed] [Google Scholar]
- Matsumoto T., Hiraoka B. Y., Tobari J. Methylamine dehydrogenase of Pseudomonase sp. J Isolation and properties of the subunits. Biochim Biophys Acta. 1978 Feb 10;522(2):303–310. doi: 10.1016/0005-2744(78)90064-5. [DOI] [PubMed] [Google Scholar]
- Matsushita K., Shinagawa E., Adachi O., Ameyama M. Reactivity with ubiquinone of quinoprotein D-glucose dehydrogenase from Gluconobacter suboxydans. J Biochem. 1989 Apr;105(4):633–637. doi: 10.1093/oxfordjournals.jbchem.a122716. [DOI] [PubMed] [Google Scholar]
- Matsushita K., Toyama H., Adachi O. Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol. 1994;36:247–301. doi: 10.1016/s0065-2911(08)60181-2. [DOI] [PubMed] [Google Scholar]
- McIntire W. S., Bates J. L., Brown D. E., Dooley D. M. Resonance Raman spectroscopy of methylamine dehydrogenase from bacterium W3A1. Biochemistry. 1991 Jan 8;30(1):125–133. doi: 10.1021/bi00215a019. [DOI] [PubMed] [Google Scholar]
- McIntire W. S. Steady-state kinetic analysis for the reaction of ammonium and alkylammonium ions with methylamine dehydrogenase from bacterium W3A1. J Biol Chem. 1987 Aug 15;262(23):11012–11019. [PubMed] [Google Scholar]
- McIntire W. S., Stults J. T. On the structure and linkage of the covalent cofactor of methylamine dehydrogenase from the methylotrophic bacterium W3A1. Biochem Biophys Res Commun. 1986 Dec 15;141(2):562–568. doi: 10.1016/s0006-291x(86)80210-8. [DOI] [PubMed] [Google Scholar]
- McIntire W. S. Tryptophan tryptophylquinone in bacterial amine dehydrogenases. Methods Enzymol. 1995;258:149–164. doi: 10.1016/0076-6879(95)58044-1. [DOI] [PubMed] [Google Scholar]
- McIntire W. S., Wemmer D. E., Chistoserdov A., Lidstrom M. E. A new cofactor in a prokaryotic enzyme: tryptophan tryptophylquinone as the redox prosthetic group in methylamine dehydrogenase. Science. 1991 May 10;252(5007):817–824. doi: 10.1126/science.2028257. [DOI] [PubMed] [Google Scholar]
- Merli A., Brodersen D. E., Morini B., Chen Z., Durley R. C., Mathews F. S., Davidson V. L., Rossi G. L. Enzymatic and electron transfer activities in crystalline protein complexes. J Biol Chem. 1996 Apr 19;271(16):9177–9180. doi: 10.1074/jbc.271.16.9177. [DOI] [PubMed] [Google Scholar]
- Moënne-Loccoz P., Nakamura N., Itoh S., Fukuzumi S., Gorren A. C., Duine J. A., Sanders-Loehr J. Electrostatic environment of the tryptophylquinone cofactor in methylamine dehydrogenase: evidence from resonance Raman spectroscopy of model compounds. Biochemistry. 1996 Apr 16;35(15):4713–4720. doi: 10.1021/bi952641q. [DOI] [PubMed] [Google Scholar]
- Moënne-Loccoz P., Nakamura N., Steinebach V., Duine J. A., Mure M., Klinman J. P., Sanders-Loehr J. Characterization of the topa quinone cofactor in amine oxidase from Escherichia coli by resonance Raman spectroscopy. Biochemistry. 1995 May 30;34(21):7020–7026. doi: 10.1021/bi00021a013. [DOI] [PubMed] [Google Scholar]
- Mure M., Klinman J. P. Model studies of topa quinone: synthesis and characterization of topa quinone derivatives. Methods Enzymol. 1995;258:39–52. doi: 10.1016/0076-6879(95)58036-0. [DOI] [PubMed] [Google Scholar]
- Nakamura N., Matsuzaki R., Choi Y. H., Tanizawa K., Sanders-Loehr J. Biosynthesis of topa quinone cofactor in bacterial amine oxidases. Solvent origin of C-2 oxygen determined by Raman spectroscopy. J Biol Chem. 1996 Mar 1;271(9):4718–4724. doi: 10.1074/jbc.271.9.4718. [DOI] [PubMed] [Google Scholar]
- Neumann R., Hevey R., Abeles R. H. The action of plasma amine oxidase on beta-haloamines. Evidence for proton abstraction in the oxidative reaction. J Biol Chem. 1975 Aug 25;250(16):6362–6367. [PubMed] [Google Scholar]
- Nunn D. N., Anthony C. The nucleotide sequence and deduced amino acid sequence of the cytochrome cL gene of Methylobacterium extorquens AM1, a novel class of c-type cytochrome. Biochem J. 1988 Dec 1;256(2):673–676. doi: 10.1042/bj2560673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nunn D. N., Day D., Anthony C. The second subunit of methanol dehydrogenase of Methylobacterium extorquens AM1. Biochem J. 1989 Jun 15;260(3):857–862. doi: 10.1042/bj2600857. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palcic M. M., Janes S. M. Spectrophotometric detection of topa quinone. Methods Enzymol. 1995;258:34–38. doi: 10.1016/0076-6879(95)58035-2. [DOI] [PubMed] [Google Scholar]
- Palcic M. M., Klinman J. P. Isotopic probes yield microscopic constants: separation of binding energy from catalytic efficiency in the bovine plasma amine oxidase reaction. Biochemistry. 1983 Dec 6;22(25):5957–5966. doi: 10.1021/bi00294a040. [DOI] [PubMed] [Google Scholar]
- Parsons M. R., Convery M. A., Wilmot C. M., Yadav K. D., Blakeley V., Corner A. S., Phillips S. E., McPherson M. J., Knowles P. F. Crystal structure of a quinoenzyme: copper amine oxidase of Escherichia coli at 2 A resolution. Structure. 1995 Nov 15;3(11):1171–1184. doi: 10.1016/s0969-2126(01)00253-2. [DOI] [PubMed] [Google Scholar]
- Richardson I. W., Anthony C. Characterization of mutant forms of the quinoprotein methanol dehydrogenase lacking an essential calcium ion. Biochem J. 1992 Nov 1;287(Pt 3):709–715. doi: 10.1042/bj2870709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rius F. X., Knowles P. F., Pettersson G. The kinetics of ammonia release during the catalytic cycle of pig plasma amine oxidase. Biochem J. 1984 Jun 15;220(3):767–772. doi: 10.1042/bj2200767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakamoto K., Miyoshi H., Matsushita K., Nakagawa M., Ikeda J., Ohshima M., Adachi O., Akagi T., Iwamura H. Comparison of the structural features of ubiquinone reduction sites between glucose dehydrogenase in Escherichia coli and bovine heart mitochondrial complex I. Eur J Biochem. 1996 Apr 1;237(1):128–135. doi: 10.1111/j.1432-1033.1996.0128n.x. [DOI] [PubMed] [Google Scholar]
- Salisbury S. A., Forrest H. S., Cruse W. B., Kennard O. A novel coenzyme from bacterial primary alcohol dehydrogenases. Nature. 1979 Aug 30;280(5725):843–844. doi: 10.1038/280843a0. [DOI] [PubMed] [Google Scholar]
- Schrover J. M., Frank J., van Wielink J. E., Duine J. A. Quaternary structure of quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa and its reoxidation with a novel cytochrome c from this organism. Biochem J. 1993 Feb 15;290(Pt 1):123–127. doi: 10.1042/bj2900123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shirai S., Matsumoto T., Tobari J. Methylamine dehydrogenase of Pseudomonas AM1. A subunit enzyme. J Biochem. 1978 Jun;83(6):1599–1607. doi: 10.1093/oxfordjournals.jbchem.a132071. [DOI] [PubMed] [Google Scholar]
- Stoorvogel J., Kraayveld D. E., Van Sluis C. A., Jongejan J. A., De Vries S., Duine J. A. Characterization of the gene encoding quinohaemoprotein ethanol dehydrogenase of Comamonas testosteroni. Eur J Biochem. 1996 Feb 1;235(3):690–698. doi: 10.1111/j.1432-1033.1996.00690.x. [DOI] [PubMed] [Google Scholar]
- Tobari J., Harada Y. Amicyanin: an electron acceptor of methylamine dehydrogenase. Biochem Biophys Res Commun. 1981 Jul 30;101(2):502–508. doi: 10.1016/0006-291x(81)91288-2. [DOI] [PubMed] [Google Scholar]
- Turowski P. N., McGuirl M. A., Dooley D. M. Intramolecular electron transfer rate between active-site copper and topa quinone in pea seedling amine oxidase. J Biol Chem. 1993 Aug 25;268(24):17680–17682. [PubMed] [Google Scholar]
- Vellieux F. M., Huitema F., Groendijk H., Kalk K. H., Jzn J. F., Jongejan J. A., Duine J. A., Petratos K., Drenth J., Hol W. G. Structure of quinoprotein methylamine dehydrogenase at 2.25 A resolution. EMBO J. 1989 Aug;8(8):2171–2178. doi: 10.1002/j.1460-2075.1989.tb08339.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verwiel P. E., Frank J., Verwiel E. J. Characterization of the second prosthetic group in methanol dehydrogenase from hyphomicrobium X. Eur J Biochem. 1981 Aug;118(2):395–399. doi: 10.1111/j.1432-1033.1981.tb06415.x. [DOI] [PubMed] [Google Scholar]
- Wang S. X., Mure M., Medzihradszky K. F., Burlingame A. L., Brown D. E., Dooley D. M., Smith A. J., Kagan H. M., Klinman J. P. A crosslinked cofactor in lysyl oxidase: redox function for amino acid side chains. Science. 1996 Aug 23;273(5278):1078–1084. doi: 10.1126/science.273.5278.1078. [DOI] [PubMed] [Google Scholar]
- White S., Boyd G., Mathews F. S., Xia Z. X., Dai W. W., Zhang Y. F., Davidson V. L. The active site structure of the calcium-containing quinoprotein methanol dehydrogenase. Biochemistry. 1993 Dec 7;32(48):12955–12958. doi: 10.1021/bi00211a002. [DOI] [PubMed] [Google Scholar]
- Xia Z. X., Dai W. W., Xiong J. P., Hao Z. P., Davidson V. L., White S., Mathews F. S. The three-dimensional structures of methanol dehydrogenase from two methylotrophic bacteria at 2.6-A resolution. J Biol Chem. 1992 Nov 5;267(31):22289–22297. [PubMed] [Google Scholar]
- Xia Z., Dai W., Zhang Y., White S. A., Boyd G. D., Mathews F. S. Determination of the gene sequence and the three-dimensional structure at 2.4 angstroms resolution of methanol dehydrogenase from Methylophilus W3A1. J Mol Biol. 1996 Jun 14;259(3):480–501. doi: 10.1006/jmbi.1996.0334. [DOI] [PubMed] [Google Scholar]
- Yamada M., Sumi K., Matsushita K., Adachi O., Yamada Y. Topological analysis of quinoprotein glucose dehydrogenase in Escherichia coli and its ubiquinone-binding site. J Biol Chem. 1993 Jun 15;268(17):12812–12817. [PubMed] [Google Scholar]
- de Beer R., Duine J. A., Frank J., Large P. J. The prosthetic group of methylamine dehydrogenase from Pseudomonas AM1: evidence for a quinone structure. Biochim Biophys Acta. 1980 Apr 25;622(2):370–374. doi: 10.1016/0005-2795(80)90050-1. [DOI] [PubMed] [Google Scholar]