Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Dec 15;320(Pt 3):713–716. doi: 10.1042/bj3200713

The Cu,Zn superoxide dismutase from Escherichia coli retains monomeric structure at high protein concentration. Evidence for altered subunit interaction in all the bacteriocupreins.

A Battistoni 1, S Folcarelli 1, R Gabbianelli 1, C Capo 1, G Rotilio 1
PMCID: PMC1217988  PMID: 9003353

Abstract

Gel-filtration chromatography experiments performed at high protein concentrations demonstrate that the Cu,Zn superoxide dismutase from Escherichia coli is monomeric irrespective of the buffer and of ionic strength. The catalytic activity of the recombinant enzyme is comparable with that of eukaryotic isoenzymes, indicating that the dimeric structure commonly found in Cu,Zn superoxide dismutases is not necessary to ensure efficient catalysis. The analysis of the amino acid sequences suggests that an altered interaction between subunits occurs in all bacterial Cu,Zn superoxide dismutases. The substitution of hydrophobic residues with charged ones at positions located at the dimer interface of all known Cu,Zn superoxide dismutases could be specifically responsible for the monomeric structure of the E. coli enzyme.

Full Text

The Full Text of this article is available as a PDF (326.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bannister J. V., Bannister W. H., Rotilio G. Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit Rev Biochem. 1987;22(2):111–180. doi: 10.3109/10409238709083738. [DOI] [PubMed] [Google Scholar]
  2. Battistoni A., Rotilio G. Isolation of an active and heat-stable monomeric form of Cu,Zn superoxide dismutase from the periplasmic space of Escherichia coli. FEBS Lett. 1995 Oct 30;374(2):199–202. doi: 10.1016/0014-5793(95)01106-o. [DOI] [PubMed] [Google Scholar]
  3. Beck B. L., Tabatabai L. B., Mayfield J. E. A protein isolated from Brucella abortus is a Cu-Zn superoxide dismutase. Biochemistry. 1990 Jan 16;29(2):372–376. doi: 10.1021/bi00454a010. [DOI] [PubMed] [Google Scholar]
  4. Benov L. T., Fridovich I. Escherichia coli expresses a copper- and zinc-containing superoxide dismutase. J Biol Chem. 1994 Oct 14;269(41):25310–25314. [PubMed] [Google Scholar]
  5. Bertini I., Piccioli M., Viezzoli M. S., Chiu C. Y., Mullenbach G. T. A spectroscopic characterization of a monomeric analog of copper, zinc superoxide dismutase. Eur Biophys J. 1994;23(3):167–176. doi: 10.1007/BF01007608. [DOI] [PubMed] [Google Scholar]
  6. Borders C. L., Jr, Fridovich I. A comparison of the effects of cyanide, hydrogen peroxide, and phenylglyoxal on eucaryotic and procaryotic Cu,Zn superoxide dismutases. Arch Biochem Biophys. 1985 Sep;241(2):472–476. doi: 10.1016/0003-9861(85)90572-7. [DOI] [PubMed] [Google Scholar]
  7. Bordo D., Djinović K., Bolognesi M. Conserved patterns in the Cu,Zn superoxide dismutase family. J Mol Biol. 1994 May 6;238(3):366–386. doi: 10.1006/jmbi.1994.1298. [DOI] [PubMed] [Google Scholar]
  8. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Folcarelli S., Battistoni A., Carrì M. T., Polticelli F., Falconi M., Nicolini L., Stella L., Rosato N., Rotilio G., Desideri A. Effect of Lys-->Arg mutation on the thermal stability of Cu,Zn superoxide dismutase: influence on the monomer-dimer equilibrium. Protein Eng. 1996 Apr;9(4):323–325. doi: 10.1093/protein/9.4.323. [DOI] [PubMed] [Google Scholar]
  10. Getzoff E. D., Tainer J. A., Stempien M. M., Bell G. I., Hallewell R. A. Evolution of CuZn superoxide dismutase and the Greek key beta-barrel structural motif. Proteins. 1989;5(4):322–336. doi: 10.1002/prot.340050408. [DOI] [PubMed] [Google Scholar]
  11. Hoogenboom H. R., Griffiths A. D., Johnson K. S., Chiswell D. J., Hudson P., Winter G. Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res. 1991 Aug 11;19(15):4133–4137. doi: 10.1093/nar/19.15.4133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Imlay K. R., Imlay J. A. Cloning and analysis of sodC, encoding the copper-zinc superoxide dismutase of Escherichia coli. J Bacteriol. 1996 May;178(9):2564–2571. doi: 10.1128/jb.178.9.2564-2571.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Inouye K., Osaki A., Tonomura B. Dissociation of dimer of bovine erythrocyte Cu,Zn-superoxide dismutase and activity of the monomer subunit: effects of urea, temperature, and enzyme concentration. J Biochem. 1994 Mar;115(3):507–515. doi: 10.1093/oxfordjournals.jbchem.a124367. [DOI] [PubMed] [Google Scholar]
  14. Kroll J. S., Langford P. R., Loynds B. M. Copper-zinc superoxide dismutase of Haemophilus influenzae and H. parainfluenzae. J Bacteriol. 1991 Dec;173(23):7449–7457. doi: 10.1128/jb.173.23.7449-7457.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kroll J. S., Langford P. R., Wilks K. E., Keil A. D. Bacterial [Cu,Zn]-superoxide dismutase: phylogenetically distinct from the eukaryotic enzyme, and not so rare after all! Microbiology. 1995 Sep;141(Pt 9):2271–2279. doi: 10.1099/13500872-141-9-2271. [DOI] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Malinowski D. P., Fridovich I. Bovine erythrocyte superoxide dismutase: diazo coupling, subunit interactions, and electrophoretic variants. Biochemistry. 1979 Jan 9;18(1):237–244. doi: 10.1021/bi00568a037. [DOI] [PubMed] [Google Scholar]
  18. Malinowski D. P., Fridovich I. Subunit association and side-chain reactivities of bovine erythrocyte superoxide dismutase in denaturing solvents. Biochemistry. 1979 Nov 13;18(23):5055–5060. doi: 10.1021/bi00590a005. [DOI] [PubMed] [Google Scholar]
  19. Marklund S., Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974 Sep 16;47(3):469–474. doi: 10.1111/j.1432-1033.1974.tb03714.x. [DOI] [PubMed] [Google Scholar]
  20. Phillips J. P., Tainer J. A., Getzoff E. D., Boulianne G. L., Kirby K., Hilliker A. J. Subunit-destabilizing mutations in Drosophila copper/zinc superoxide dismutase: neuropathology and a model of dimer dysequilibrium. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8574–8578. doi: 10.1073/pnas.92.19.8574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Puget K., Michelson A. M. Isolation of a new copper-containing superoxide dismutase bacteriocuprein. Biochem Biophys Res Commun. 1974 Jun 4;58(3):830–838. doi: 10.1016/s0006-291x(74)80492-4. [DOI] [PubMed] [Google Scholar]
  22. Rigo A., Marmocchi F., Cocco D., Viglino P., Rotilio G. On the quaternary structure of copper-zinc superoxide dismutases. Reversible dissociation into protomers of the isozyme I from wheat germ. Biochemistry. 1978 Feb 7;17(3):534–537. doi: 10.1021/bi00596a025. [DOI] [PubMed] [Google Scholar]
  23. Rigo A., Viglino P., Bonori M., Cocco D., Calabrese L., Rotilio G. The binding of copper ions to copper-free bovine superoxide dismutase. Kinetic aspects. Biochem J. 1978 Feb 1;169(2):277–280. doi: 10.1042/bj1690277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rigo A., Viglino P., Rotilio G. Polarographic determination of superoxide dismutase. Anal Biochem. 1975 Sep;68(1):1–8. doi: 10.1016/0003-2697(75)90672-7. [DOI] [PubMed] [Google Scholar]
  25. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  26. Steinkühler C., Carrì M. T., Micheli G., Knoepfel L., Weser U., Rotilio G. Copper-dependent metabolism of Cu,Zn-superoxide dismutase in human K562 cells. Lack of specific transcriptional activation and accumulation of a partially inactivated enzyme. Biochem J. 1994 Sep 15;302(Pt 3):687–694. doi: 10.1042/bj3020687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Steinman H. M. Bacteriocuprein superoxide dismutases in pseudomonads. J Bacteriol. 1985 Jun;162(3):1255–1260. doi: 10.1128/jb.162.3.1255-1260.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Steinman H. M. Copper-zinc superoxide dismutase from Caulobacter crescentus CB15. A novel bacteriocuprein form of the enzyme. J Biol Chem. 1982 Sep 10;257(17):10283–10293. [PubMed] [Google Scholar]
  29. Steinman H. M., Ely B. Copper-zinc superoxide dismutase of Caulobacter crescentus: cloning, sequencing, and mapping of the gene and periplasmic location of the enzyme. J Bacteriol. 1990 Jun;172(6):2901–2910. doi: 10.1128/jb.172.6.2901-2910.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES