Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Dec 15;320(Pt 3):735–743. doi: 10.1042/bj3200735

Lactase phlorhizin hydrolase turnover in vivo in water-fed and colostrum-fed newborn pigs.

M A Dudley 1, D G Burrin 1, A Quaroni 1, J Rosenberger 1, G Cook 1, B L Nichols 1, P J Reeds 1
PMCID: PMC1217992  PMID: 9003357

Abstract

We have estimated the synthesis rates in vivo of precursor and brush-border (BB) polypeptides of lactase phlorhizin hydrolase (LPH) in newborn pigs fed with water or colostrum for 24h post partum. At the end of the feeding period, piglets were anaesthetized and infused intravenously for 3h with L-[4-3H]- phenylalanine. Blood and jejunal samples were collected at timed intervals. The precursor and BB forms of LPH were isolated from jejunal mucosa by immunoprecipitation followed by SDS/PAGE, and their specific radioactivity in Phe determined. The kinetics of precursor and BB LPH labelling were analysed by using a linear compartmental model. Immunoisolated LPH protein consisted of five polypeptides [high-mannose LPH precursor (proLPHh), complex glycosylated LPH precursor (proLPHe), intermediate complex glycosylated LPH precursor (proLPH1i) and two forms of BB LPH]. The fractional synthesis rate (Ks) of proLPHh and proLPHc (approx. 5%/min) were the same in the two groups but the absolute synthesis rate (in arbitrary units, min-1) of proLPHh in the colostrum-fed animals was twice that of the water-fed animals. The Ks values of proLPHi polypeptides were significantly different (water-fed, 3.89%/min; colostrum-fed, 1.6%/min), but the absolute synthesis rates did not differ. The Ks of BB LPH was not different between experimental treatment groups (on average 0.037%/min). However, the proportion of newly synthesized proLPHh processed to BB LPH was 48% lower in colostrum-fed than in water-fed animals. We conclude that in neonatal pigs, the ingestion of colostrum stimulates the synthesis of proLPHh but, at least temporarily, disrupts the processing of proLPH polypeptides to the BB enzyme.

Full Text

The Full Text of this article is available as a PDF (425.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes D. M., Calvert C. C., Klasing K. C. Source of amino acids for tRNA acylation. Implications for measurement of protein synthesis. Biochem J. 1992 Apr 15;283(Pt 2):583–589. doi: 10.1042/bj2830583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burrin D. G., Dudley M. A., Reeds P. J., Shulman R. J., Perkinson S., Rosenberger J. Feeding colostrum rapidly alters enzymatic activity and the relative isoform abundance of jejunal lactase in neonatal pigs. J Nutr. 1994 Dec;124(12):2350–2357. doi: 10.1093/jn/124.12.350. [DOI] [PubMed] [Google Scholar]
  3. Burrin D. G., Shulman R. J., Reeds P. J., Davis T. A., Gravitt K. R. Porcine colostrum and milk stimulate visceral organ and skeletal muscle protein synthesis in neonatal piglets. J Nutr. 1992 Jun;122(6):1205–1213. doi: 10.1093/jn/122.6.1205. [DOI] [PubMed] [Google Scholar]
  4. Corring T., Durand G., Henry Y. Some aspects of development and nutrition in the monogastric animal during postnatal life. World Rev Nutr Diet. 1982;39:124–190. doi: 10.1159/000406496. [DOI] [PubMed] [Google Scholar]
  5. Danielsen E. M., Cowell G. M., Norén O., Sjöström H. Biosynthesis of microvillar proteins. Biochem J. 1984 Jul 1;221(1):1–14. doi: 10.1042/bj2210001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Danielsen E. M., Skovbjerg H., Norén O., Sjöström H. Biosynthesis of intestinal microvillar proteins. Intracellular processing of lactase-phlorizin hydrolase. Biochem Biophys Res Commun. 1984 Jul 18;122(1):82–90. doi: 10.1016/0006-291x(84)90442-x. [DOI] [PubMed] [Google Scholar]
  7. Dudley M. A., Hachey D. L., Quaroni A., Hutchens T. W., Nichols B. L., Rosenberger J., Perkinson J. S., Cook G., Reeds P. J. In vivo sucrase-isomaltase and lactase-phlorizin hydrolase turnover in the fed adult rat. J Biol Chem. 1993 Jun 25;268(18):13609–13616. [PubMed] [Google Scholar]
  8. Dudley M. A., Jahoor F., Burrin D. G., Reeds P. J. Brush-border disaccharidase synthesis in infant pigs measured in vivo with [2H3]leucine. Am J Physiol. 1994 Dec;267(6 Pt 1):G1128–G1134. doi: 10.1152/ajpgi.1994.267.6.G1128. [DOI] [PubMed] [Google Scholar]
  9. Dudley M. A., Nichols B. L., Rosenberger J., Perkinson J. S., Reeds P. J. Feeding status affects in vivo prosucrase.isomaltase processing in rat jejunum. J Nutr. 1992 Mar;122(3):528–534. doi: 10.1093/jn/122.3.528. [DOI] [PubMed] [Google Scholar]
  10. Dudley M. A., Shulman R. J., Reeds P. J., Rosenberger J. N., Putman M., Johnston P. K., Perkinson J. S., Nichols B. L. Developmental changes in lactase-phlorizin hydrolase precursor isoforms in the rat. J Pediatr Gastroenterol Nutr. 1992 Oct;15(3):260–269. doi: 10.1097/00005176-199210000-00006. [DOI] [PubMed] [Google Scholar]
  11. Dudley M. A., Wang H., Hachey D. L., Shulman R. J., Perkinson J. S., Rosenberger J., Mersmann H. J. Jejunal brush border hydrolase activity is higher in tallow-fed pigs than in corn oil-fed pigs. J Nutr. 1994 Oct;124(10):1996–2005. doi: 10.1093/jn/124.10.1996. [DOI] [PubMed] [Google Scholar]
  12. Grosvenor C. E., Picciano M. F., Baumrucker C. R. Hormones and growth factors in milk. Endocr Rev. 1993 Dec;14(6):710–728. doi: 10.1210/edrv-14-6-710. [DOI] [PubMed] [Google Scholar]
  13. Koldovský O., Thornburg W. Hormones in milk. J Pediatr Gastroenterol Nutr. 1987 Mar-Apr;6(2):172–196. [PubMed] [Google Scholar]
  14. Kömüves L. G., Heath J. P. Uptake of maternal immunoglobulins in the enterocytes of suckling piglets: improved detection with a streptavidin-biotin bridge gold technique. J Histochem Cytochem. 1992 Nov;40(11):1637–1646. doi: 10.1177/40.11.1431052. [DOI] [PubMed] [Google Scholar]
  15. Kömüves L. G., Nicols B. L., Hutchens T. W., Heath J. P. Formation of crystalloid inclusions in the small intestine of neonatal pigs: an immunocytochemical study using colloidal gold. Histochem J. 1993 Jan;25(1):19–29. doi: 10.1007/BF00161041. [DOI] [PubMed] [Google Scholar]
  16. Le Bivic A., Quaroni A., Nichols B., Rodriguez-Boulan E. Biogenetic pathways of plasma membrane proteins in Caco-2, a human intestinal epithelial cell line. J Cell Biol. 1990 Oct;111(4):1351–1361. doi: 10.1083/jcb.111.4.1351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lindberg T. Protease inhibitors in human milk. Pediatr Res. 1979 Sep;13(9):969–972. doi: 10.1203/00006450-197909000-00003. [DOI] [PubMed] [Google Scholar]
  18. Mantei N., Villa M., Enzler T., Wacker H., Boll W., James P., Hunziker W., Semenza G. Complete primary structure of human and rabbit lactase-phlorizin hydrolase: implications for biosynthesis, membrane anchoring and evolution of the enzyme. EMBO J. 1988 Sep;7(9):2705–2713. doi: 10.1002/j.1460-2075.1988.tb03124.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Matter K., Hauri H. P. Intracellular transport and conformational maturation of intestinal brush border hydrolases. Biochemistry. 1991 Feb 19;30(7):1916–1923. doi: 10.1021/bi00221a026. [DOI] [PubMed] [Google Scholar]
  20. Naim H. Y., Lacey S. W., Sambrook J. F., Gething M. J. Expression of a full-length cDNA coding for human intestinal lactase-phlorizin hydrolase reveals an uncleaved, enzymatically active, and transport-competent protein. J Biol Chem. 1991 Jul 5;266(19):12313–12320. [PubMed] [Google Scholar]
  21. Quaroni A., Isselbacher K. J. Study of intestinal cell differentiation with monoclonal antibodies to intestinal cell surface components. Dev Biol. 1985 Oct;111(2):267–279. doi: 10.1016/0012-1606(85)90482-8. [DOI] [PubMed] [Google Scholar]
  22. Semenza G. The J.E. Purkyne lecture: the insertion of stalked proteins of the brush border membranes: the state of the art in 1988. Biochem Int. 1989 Jan;18(1):15–33. [PubMed] [Google Scholar]
  23. Shulman R. J., Henning S. J., Nichols B. L. The miniature pig as an animal model for the study of intestinal enzyme development. Pediatr Res. 1988 Mar;23(3):311–315. doi: 10.1203/00006450-198803000-00016. [DOI] [PubMed] [Google Scholar]
  24. Skovbjerg H., Danielsen E. M., Noren O., Sjöström H. Evidence for biosynthesis of lactase-phlorizin hydrolase as a single-chain high-molecular weight precursor. Biochim Biophys Acta. 1984 Apr 10;798(2):247–251. doi: 10.1016/0304-4165(84)90312-x. [DOI] [PubMed] [Google Scholar]
  25. Sterchi E. E., Mills P. R., Fransen J. A., Hauri H. P., Lentze M. J., Naim H. Y., Ginsel L., Bond J. Biogenesis of intestinal lactase-phlorizin hydrolase in adults with lactose intolerance. Evidence for reduced biosynthesis and slowed-down maturation in enterocytes. J Clin Invest. 1990 Oct;86(4):1329–1337. doi: 10.1172/JCI114842. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES