Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Dec 15;320(Pt 3):837–845. doi: 10.1042/bj3200837

The effect of chloroform on mitochondrial energy transduction.

L F Chien 1, M D Brand 1
PMCID: PMC1218005  PMID: 9003370

Abstract

The effect of chloroform on mitochondrial respiration with succinate was investigated by applying the method of Brand, Chien and Diolez [(1994) Biochem. J. 297, 27-29] to examine whether chloroform causes redox slip (fewer protons pumped per electron transferred) during mitochondrial electron transport. N,N,N',N'-Tetramethyl-p-phenylenediamine (TMPD), which lowers H+/O (the number of protons pumped to the external medium by the electron transport complexes per oxygen atom consumed) by altering the electron flow pathway, was investigated for comparison. Non-phosphorylating mitochondria that had been treated with 350 microM TMPD or 30 mM chloroform were titrated with malonate in the presence of submaximal concentrations of the uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP). Linear relations between CCCP-induced extra respiration and protonmotive force were obtained. These results showed that there was no measurable protonmotive force-dependent or rate-dependent slip in mitochondria treated with either TMPD or chloroform. However, both TMPD and chloroform seemed to decrease H+/O in a manner independent of protonmotive force and rate. The relationship between non-phosphorylating respiration and protonmotive force was simulated in mitochondria of which 25% of the total population were assumed to have been broken. The simulation showed that the apparent decrease in H+/O on the addition of TMPD or chloroform to mitochondria could be in principle accounted for by breakage. Assays of mitochondrial breakage (ATP hydrolysis in the presence of atractyloside and oxidation of exogenous NADH) showed that chloroform broke mitochondria but TMPD did not. We conclude that chloroform changes the measured H+/O as an artifact by causing mitochondrial breakage and does not cause measurable redox slip, whereas TMPD genuinely lowers H+/O.

Full Text

The Full Text of this article is available as a PDF (628.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beavis A. D., Brannan R. D., Garlid K. D. Swelling and contraction of the mitochondrial matrix. I. A structural interpretation of the relationship between light scattering and matrix volume. J Biol Chem. 1985 Nov 5;260(25):13424–13433. [PubMed] [Google Scholar]
  2. Bernardi P., Azzone G. F. ATP synthesis during exogenous NADH oxidation. A reappraisal. Biochim Biophys Acta. 1982 Jan 20;679(1):19–27. doi: 10.1016/0005-2728(82)90250-x. [DOI] [PubMed] [Google Scholar]
  3. Brand M. D., Chien L. F., Ainscow E. K., Rolfe D. F., Porter R. K. The causes and functions of mitochondrial proton leak. Biochim Biophys Acta. 1994 Aug 30;1187(2):132–139. doi: 10.1016/0005-2728(94)90099-x. [DOI] [PubMed] [Google Scholar]
  4. Brand M. D., Chien L. F., Diolez P. Experimental discrimination between proton leak and redox slip during mitochondrial electron transport. Biochem J. 1994 Jan 1;297(Pt 1):27–29. doi: 10.1042/bj2970027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brand M. D., Chien L. F., Rolfe D. F. Control of oxidative phosphorylation in liver mitochondria and hepatocytes. Biochem Soc Trans. 1993 Aug;21(3):757–762. doi: 10.1042/bst0210757. [DOI] [PubMed] [Google Scholar]
  6. Brown G. C., Brand M. D. Changes in permeability to protons and other cations at high proton motive force in rat liver mitochondria. Biochem J. 1986 Feb 15;234(1):75–81. doi: 10.1042/bj2340075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown G. C., Brand M. D. Thermodynamic control of electron flux through mitochondrial cytochrome bc1 complex. Biochem J. 1985 Jan 15;225(2):399–405. doi: 10.1042/bj2250399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brown G. C. The leaks and slips of bioenergetic membranes. FASEB J. 1992 Aug;6(11):2961–2965. doi: 10.1096/fasebj.6.11.1644259. [DOI] [PubMed] [Google Scholar]
  9. Brown G. C. The relative proton stoichiometries of the mitochondrial proton pumps are independent of the proton motive force. J Biol Chem. 1989 Sep 5;264(25):14704–14709. [PubMed] [Google Scholar]
  10. CHANCE B., WILLIAMS G. R. The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem. 1956;17:65–134. doi: 10.1002/9780470122624.ch2. [DOI] [PubMed] [Google Scholar]
  11. Canton M., Luvisetto S., Schmehl I., Azzone G. F. The nature of mitochondrial respiration and discrimination between membrane and pump properties. Biochem J. 1995 Sep 1;310(Pt 2):477–481. doi: 10.1042/bj3100477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Groen B. H., Berden J. A., van Dam K. Differentiation between leaks and slips in oxidative phosphorylation. Biochim Biophys Acta. 1990 Aug 30;1019(2):121–127. doi: 10.1016/0005-2728(90)90132-n. [DOI] [PubMed] [Google Scholar]
  13. Hafner R. P., Brand M. D. Hypothyroidism in rats does not lower mitochondrial ADP/O and H+/O ratios. Biochem J. 1988 Mar 1;250(2):477–484. doi: 10.1042/bj2500477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Krishnamoorthy G., Hinkle P. C. Non-ohmic proton conductance of mitochondria and liposomes. Biochemistry. 1984 Apr 10;23(8):1640–1645. doi: 10.1021/bi00303a009. [DOI] [PubMed] [Google Scholar]
  15. LEHNINGER A. L. Phosphorylation coupled to oxidation of dihydrodiphosphopyridine nucleotide. J Biol Chem. 1951 May;190(1):345–359. [PubMed] [Google Scholar]
  16. Ludmer P. L., Selwyn A. P., Shook T. L., Wayne R. R., Mudge G. H., Alexander R. W., Ganz P. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med. 1986 Oct 23;315(17):1046–1051. doi: 10.1056/NEJM198610233151702. [DOI] [PubMed] [Google Scholar]
  17. Luvisetto S., Conti E., Buso M., Azzone G. F. Flux ratios and pump stoichiometries at sites II and III in liver mitochondria. Effect of slips and leaks. J Biol Chem. 1991 Jan 15;266(2):1034–1042. [PubMed] [Google Scholar]
  18. Luvisetto S., Pietrobon D., Azzone G. F. Uncoupling of oxidative phosphorylation. 1. Protonophoric effects account only partially for uncoupling. Biochemistry. 1987 Nov 17;26(23):7332–7338. doi: 10.1021/bi00397a021. [DOI] [PubMed] [Google Scholar]
  19. MITCHELL P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature. 1961 Jul 8;191:144–148. doi: 10.1038/191144a0. [DOI] [PubMed] [Google Scholar]
  20. Murphy M. P., Brand M. D. Membrane-potential-dependent changes in the stoichiometry of charge translocation by the mitochondrial electron transport chain. Eur J Biochem. 1988 May 2;173(3):637–644. doi: 10.1111/j.1432-1033.1988.tb14046.x. [DOI] [PubMed] [Google Scholar]
  21. Murphy M. P. Slip and leak in mitochondrial oxidative phosphorylation. Biochim Biophys Acta. 1989 Nov 23;977(2):123–141. doi: 10.1016/s0005-2728(89)80063-5. [DOI] [PubMed] [Google Scholar]
  22. Nicholls D. G. The effective proton conductance of the inner membrane of mitochondria from brown adipose tissue. Dependency on proton electrochemical potential gradient. Eur J Biochem. 1977 Jul 15;77(2):349–356. doi: 10.1111/j.1432-1033.1977.tb11674.x. [DOI] [PubMed] [Google Scholar]
  23. Nicholls D. G. The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat-liver mitochondria as determined by ion distribution. Eur J Biochem. 1974 Dec 16;50(1):305–315. doi: 10.1111/j.1432-1033.1974.tb03899.x. [DOI] [PubMed] [Google Scholar]
  24. Pietrobon D., Azzone G. F., Walz D. Effect of funiculosin and antimycin A on the redox-driven H+-pumps in mitochondria: on the nature of "leaks'. Eur J Biochem. 1981 Jul;117(2):389–394. doi: 10.1111/j.1432-1033.1981.tb06350.x. [DOI] [PubMed] [Google Scholar]
  25. Porter R. K., Brand M. D. Mitochondrial proton conductance and H+/O ratio are independent of electron transport rate in isolated hepatocytes. Biochem J. 1995 Sep 1;310(Pt 2):379–382. doi: 10.1042/bj3100379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Reynafarje B., Costa L. E., Lehninger A. L. O2 solubility in aqueous media determined by a kinetic method. Anal Biochem. 1985 Mar;145(2):406–418. doi: 10.1016/0003-2697(85)90381-1. [DOI] [PubMed] [Google Scholar]
  27. Rottenberg H. Decoupling of oxidative phosphorylation and photophosphorylation. Biochim Biophys Acta. 1990 Jul 17;1018(1):1–17. doi: 10.1016/0005-2728(90)90103-b. [DOI] [PubMed] [Google Scholar]
  28. Rottenberg H. Uncoupling of oxidative phosphorylation in rat liver mitochondria by general anesthetics. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3313–3317. doi: 10.1073/pnas.80.11.3313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rottenberg H., Waring A., Rubin E. Tolerance and cross-tolerance in chronic alcoholics: reduced membrane binding of ethanol and other drugs. Science. 1981 Jul 31;213(4507):583–585. doi: 10.1126/science.6264608. [DOI] [PubMed] [Google Scholar]
  30. Vignais P. V. Molecular and physiological aspects of adenine nucleotide transport in mitochondria. Biochim Biophys Acta. 1976 Apr 30;456(1):1–38. doi: 10.1016/0304-4173(76)90007-0. [DOI] [PubMed] [Google Scholar]
  31. Zoratti M., Favaron M., Pietrobon D., Azzone G. F. Intrinsic uncoupling of mitochondrial proton pumps. 1. Non-ohmic conductance cannot account for the nonlinear dependence of static head respiration on delta microH. Biochemistry. 1986 Feb 25;25(4):760–767. doi: 10.1021/bi00352a004. [DOI] [PubMed] [Google Scholar]
  32. Zókiewska A., Zabłocka B., Duszyński J., Wojtczak L. Resting state respiration of mitochondria: reappraisal of the role of passive ion fluxes. Arch Biochem Biophys. 1989 Dec;275(2):580–590. doi: 10.1016/0003-9861(89)90404-9. [DOI] [PubMed] [Google Scholar]
  33. el-Shenawy N. S., Abdel-Rahman M. S. The mechanism of chloroform toxicity in isolated rat hepatocytes. Toxicol Lett. 1993 Jul;69(1):77–85. doi: 10.1016/0378-4274(93)90148-q. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES