Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Dec 15;320(Pt 3):855–863. doi: 10.1042/bj3200855

Reducing sugars trigger oxidative modification and apoptosis in pancreatic beta-cells by provoking oxidative stress through the glycation reaction.

H Kaneto 1, J Fujii 1, T Myint 1, N Miyazawa 1, K N Islam 1, Y Kawasaki 1, K Suzuki 1, M Nakamura 1, H Tatsumi 1, Y Yamasaki 1, N Taniguchi 1
PMCID: PMC1218007  PMID: 9003372

Abstract

Several reducing sugars brought about apoptosis in isolated rat pancreatic islet cells and in the pancreatic beta-cell-derived cell line HIT. This apoptosis was characterized biochemically by inter-nucleosomal DNA cleavage and morphologically by nuclear shrinkage, chromatin condensation and apoptotic body formation. N-Acetyl-L-cysteine, an antioxidant, and aminoguanidine, an inhibitor of the glycation reaction, inhibited this apoptosis. We also showed directly that proteins in beta-cells were actually glycated by using an antibody which can specifically recognize proteins glycated by fructose, but not by glucose. Furthermore, fluorescence-activated cell sorting analysis using dichlorofluorescein diacetate showed that reducing sugars increased intracellular peroxide levels prior to the induction of apoptosis. Levels of carbonyl, an index of oxidative modification, and of malondialdehyde, a lipid peroxidation product, were also increased. Taken together, these results suggest that reducing sugars trigger oxidative modification and apoptosis in pancreatic beta-cells by provoking oxidative stress mainly through the glycation reaction, which may explain the deterioration of beta-cells under conditions of diabetes.

Full Text

The Full Text of this article is available as a PDF (549.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aharoni D., Dantes A., Oren M., Amsterdam A. cAMP-mediated signals as determinants for apoptosis in primary granulosa cells. Exp Cell Res. 1995 May;218(1):271–282. doi: 10.1006/excr.1995.1156. [DOI] [PubMed] [Google Scholar]
  2. Ankarcrona M., Dypbukt J. M., Brüne B., Nicotera P. Interleukin-1 beta-induced nitric oxide production activates apoptosis in pancreatic RINm5F cells. Exp Cell Res. 1994 Jul;213(1):172–177. doi: 10.1006/excr.1994.1187. [DOI] [PubMed] [Google Scholar]
  3. Barbieri D., Grassilli E., Monti D., Salvioli S., Franceschini M. G., Franchini A., Bellesia E., Salomoni P., Negro P., Capri M. D-ribose and deoxy-D-ribose induce apoptosis in human quiescent peripheral blood mononuclear cells. Biochem Biophys Res Commun. 1994 Jun 30;201(3):1109–1116. doi: 10.1006/bbrc.1994.1820. [DOI] [PubMed] [Google Scholar]
  4. Bass D. A., Parce J. W., Dechatelet L. R., Szejda P., Seeds M. C., Thomas M. Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J Immunol. 1983 Apr;130(4):1910–1917. [PubMed] [Google Scholar]
  5. Brownlee M., Vlassara H., Kooney A., Ulrich P., Cerami A. Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking. Science. 1986 Jun 27;232(4758):1629–1632. doi: 10.1126/science.3487117. [DOI] [PubMed] [Google Scholar]
  6. Carubelli R., Schneider J. E., Jr, Pye Q. N., Floyd R. A. Cytotoxic effects of autoxidative glycation. Free Radic Biol Med. 1995 Feb;18(2):265–269. doi: 10.1016/0891-5849(94)e0134-5. [DOI] [PubMed] [Google Scholar]
  7. Cerami A. Hypothesis. Glucose as a mediator of aging. J Am Geriatr Soc. 1985 Sep;33(9):626–634. doi: 10.1111/j.1532-5415.1985.tb06319.x. [DOI] [PubMed] [Google Scholar]
  8. Dypbukt J. M., Ankarcrona M., Burkitt M., Sjöholm A., Ström K., Orrenius S., Nicotera P. Different prooxidant levels stimulate growth, trigger apoptosis, or produce necrosis of insulin-secreting RINm5F cells. The role of intracellular polyamines. J Biol Chem. 1994 Dec 2;269(48):30553–30560. [PubMed] [Google Scholar]
  9. Edelstein D., Brownlee M. Mechanistic studies of advanced glycosylation end product inhibition by aminoguanidine. Diabetes. 1992 Jan;41(1):26–29. doi: 10.2337/diab.41.1.26. [DOI] [PubMed] [Google Scholar]
  10. Esterbauer H., Cheeseman K. H. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 1990;186:407–421. doi: 10.1016/0076-6879(90)86134-h. [DOI] [PubMed] [Google Scholar]
  11. Ferrari G., Yan C. Y., Greene L. A. N-acetylcysteine (D- and L-stereoisomers) prevents apoptotic death of neuronal cells. J Neurosci. 1995 Apr;15(4):2857–2866. doi: 10.1523/JNEUROSCI.15-04-02857.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gotoh M., Maki T., Kiyoizumi T., Satomi S., Monaco A. P. An improved method for isolation of mouse pancreatic islets. Transplantation. 1985 Oct;40(4):437–438. doi: 10.1097/00007890-198510000-00018. [DOI] [PubMed] [Google Scholar]
  13. Gould G. W., Thomas H. M., Jess T. J., Bell G. I. Expression of human glucose transporters in Xenopus oocytes: kinetic characterization and substrate specificities of the erythrocyte, liver, and brain isoforms. Biochemistry. 1991 May 28;30(21):5139–5145. doi: 10.1021/bi00235a004. [DOI] [PubMed] [Google Scholar]
  14. Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131–138. doi: 10.1016/0003-2697(82)90118-x. [DOI] [PubMed] [Google Scholar]
  15. Halliwell B., Gutteridge J. M., Cross C. E. Free radicals, antioxidants, and human disease: where are we now? J Lab Clin Med. 1992 Jun;119(6):598–620. [PubMed] [Google Scholar]
  16. Hockenbery D. M., Oltvai Z. N., Yin X. M., Milliman C. L., Korsmeyer S. J. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell. 1993 Oct 22;75(2):241–251. doi: 10.1016/0092-8674(93)80066-n. [DOI] [PubMed] [Google Scholar]
  17. Kaneto H., Fujii J., Seo H. G., Suzuki K., Matsuoka T., Nakamura M., Tatsumi H., Yamasaki Y., Kamada T., Taniguchi N. Apoptotic cell death triggered by nitric oxide in pancreatic beta-cells. Diabetes. 1995 Jul;44(7):733–738. doi: 10.2337/diab.44.7.733. [DOI] [PubMed] [Google Scholar]
  18. Kaneto H., Fujii J., Suzuki K., Kasai H., Kawamori R., Kamada T., Taniguchi N. DNA cleavage induced by glycation of Cu,Zn-superoxide dismutase. Biochem J. 1994 Nov 15;304(Pt 1):219–225. doi: 10.1042/bj3040219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kashiwagi A., Obata T., Suzaki M., Takagi Y., Kida Y., Ogawa T., Tanaka Y., Asahina T., Ikebuchi M., Saeki Y. Increase in cardiac muscle fructose content in streptozotocin-induced diabetic rats. Metabolism. 1992 Oct;41(10):1041–1046. doi: 10.1016/0026-0495(92)90283-g. [DOI] [PubMed] [Google Scholar]
  20. Levine R. L., Garland D., Oliver C. N., Amici A., Climent I., Lenz A. G., Ahn B. W., Shaltiel S., Stadtman E. R. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990;186:464–478. doi: 10.1016/0076-6879(90)86141-h. [DOI] [PubMed] [Google Scholar]
  21. McConkey D. J., Orrenius S., Jondal M. Agents that elevate cAMP stimulate DNA fragmentation in thymocytes. J Immunol. 1990 Aug 15;145(4):1227–1230. [PubMed] [Google Scholar]
  22. McPherson J. D., Shilton B. H., Walton D. J. Role of fructose in glycation and cross-linking of proteins. Biochemistry. 1988 Mar 22;27(6):1901–1907. doi: 10.1021/bi00406a016. [DOI] [PubMed] [Google Scholar]
  23. Meister A. Glutathione metabolism and its selective modification. J Biol Chem. 1988 Nov 25;263(33):17205–17208. [PubMed] [Google Scholar]
  24. Mullarkey C. J., Edelstein D., Brownlee M. Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem Biophys Res Commun. 1990 Dec 31;173(3):932–939. doi: 10.1016/s0006-291x(05)80875-7. [DOI] [PubMed] [Google Scholar]
  25. Myint T., Hoshi S., Ookawara T., Miyazawa N., Suzuki K., Taniguchi N. Immunological detection of glycated proteins in normal and streptozotocin-induced diabetic rats using anti hexitol-lysine IgG. Biochim Biophys Acta. 1995 Oct 17;1272(2):73–79. doi: 10.1016/0925-4439(95)00067-e. [DOI] [PubMed] [Google Scholar]
  26. Oberhammer F. A., Pavelka M., Sharma S., Tiefenbacher R., Purchio A. F., Bursch W., Schulte-Hermann R. Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor beta 1. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5408–5412. doi: 10.1073/pnas.89.12.5408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Olson L. K., Redmon J. B., Towle H. C., Robertson R. P. Chronic exposure of HIT cells to high glucose concentrations paradoxically decreases insulin gene transcription and alters binding of insulin gene regulatory protein. J Clin Invest. 1993 Jul;92(1):514–519. doi: 10.1172/JCI116596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ookawara T., Kawamura N., Kitagawa Y., Taniguchi N. Site-specific and random fragmentation of Cu,Zn-superoxide dismutase by glycation reaction. Implication of reactive oxygen species. J Biol Chem. 1992 Sep 15;267(26):18505–18510. [PubMed] [Google Scholar]
  29. Picard S., Parthasarathy S., Fruebis J., Witztum J. L. Aminoguanidine inhibits oxidative modification of low density lipoprotein protein and the subsequent increase in uptake by macrophage scavenger receptors. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6876–6880. doi: 10.1073/pnas.89.15.6876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ratan R. R., Murphy T. H., Baraban J. M. Oxidative stress induces apoptosis in embryonic cortical neurons. J Neurochem. 1994 Jan;62(1):376–379. doi: 10.1046/j.1471-4159.1994.62010376.x. [DOI] [PubMed] [Google Scholar]
  31. Robertson R. P., Olson L. K., Zhang H. J. Differentiating glucose toxicity from glucose desensitization: a new message from the insulin gene. Diabetes. 1994 Sep;43(9):1085–1089. doi: 10.2337/diab.43.9.1085. [DOI] [PubMed] [Google Scholar]
  32. Sadowski H. B., Gilman M. Z. Cell-free activation of a DNA-binding protein by epidermal growth factor. Nature. 1993 Mar 4;362(6415):79–83. doi: 10.1038/362079a0. [DOI] [PubMed] [Google Scholar]
  33. Sakurai T., Tsuchiya S. Superoxide production from nonenzymatically glycated protein. FEBS Lett. 1988 Aug 29;236(2):406–410. doi: 10.1016/0014-5793(88)80066-8. [DOI] [PubMed] [Google Scholar]
  34. Sandstrom P. A., Buttke T. M. Autocrine production of extracellular catalase prevents apoptosis of the human CEM T-cell line in serum-free medium. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4708–4712. doi: 10.1073/pnas.90.10.4708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Scaccini C., Chiesa G., Jialal I. A critical assessment of the effects of aminoguanidine and ascorbate on the oxidative modification of LDL: evidence for interference with some assays of lipoprotein oxidation by aminoguanidine. J Lipid Res. 1994 Jun;35(6):1085–1092. [PubMed] [Google Scholar]
  36. Schreck R., Rieber P., Baeuerle P. A. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J. 1991 Aug;10(8):2247–2258. doi: 10.1002/j.1460-2075.1991.tb07761.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Suárez G., Rajaram R., Oronsky A. L., Gawinowicz M. A. Nonenzymatic glycation of bovine serum albumin by fructose (fructation). Comparison with the Maillard reaction initiated by glucose. J Biol Chem. 1989 Mar 5;264(7):3674–3679. [PubMed] [Google Scholar]
  38. Tilton R. G., Chang K., Nyengaard J. R., Van den Enden M., Ido Y., Williamson J. R. Inhibition of sorbitol dehydrogenase. Effects on vascular and neural dysfunction in streptozocin-induced diabetic rats. Diabetes. 1995 Feb;44(2):234–242. doi: 10.2337/diab.44.2.234. [DOI] [PubMed] [Google Scholar]
  39. Wirth H. P., Wermuth B. Immunohistochemical localisation of aldehyde and aldose reductase in human tissues. Prog Clin Biol Res. 1985;174:231–239. [PubMed] [Google Scholar]
  40. Wolff S. P., Dean R. T. Glucose autoxidation and protein modification. The potential role of 'autoxidative glycosylation' in diabetes. Biochem J. 1987 Jul 1;245(1):243–250. doi: 10.1042/bj2450243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Yorek M. A., Wiese T. J., Davidson E. P., Dunlap J. A., Stefani M. R., Conner C. E., Lattimer S. A., Kamijo M., Greene D. A., Sima A. A. Reduced motor nerve conduction velocity and Na(+)-K(+)-ATPase activity in rats maintained on L-fucose diet. Reversal by myo-inositol supplementation. Diabetes. 1993 Oct;42(10):1401–1406. doi: 10.2337/diab.42.10.1401. [DOI] [PubMed] [Google Scholar]
  42. Yoshida K., Hirokawa J., Tagami S., Kawakami Y., Urata Y., Kondo T. Weakened cellular scavenging activity against oxidative stress in diabetes mellitus: regulation of glutathione synthesis and efflux. Diabetologia. 1995 Feb;38(2):201–210. doi: 10.1007/BF00400095. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES