Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Dec 15;320(Pt 3):865–870. doi: 10.1042/bj3200865

Post-translational peptide bond formation during concanavalin A processing in vitro.

P S Sheldon 1, J N Keen 1, D J Bowles 1
PMCID: PMC1218008  PMID: 9003373

Abstract

Post-translational processing of concanavalin A (Con A) is complex, involving deglycosylation, proteolytic cleavage on the carboxy group side of asparagine residues and formation of a peptide bond de novo. This has been studied with the 125I-labelled Con A glycoprotein precursor as a substrate for processing in vitro. Extracts of immature jackbean cotyledons and the commercially available purified preparation of asparaginylendo-peptidase were able to catalyse the above processes. The processing resulted in the conversion of the 33.5 kDa inactive glycoprotein precursor into an active lectin. Processing activity was maximal at approx. pH 5.5. Evidence to support processing at authentic sites was obtained by observation of the release of 125I at positions in the sequence where tyrosine residues were present.

Full Text

The Full Text of this article is available as a PDF (457.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe Y., Shirane K., Yokosawa H., Matsushita H., Mitta M., Kato I., Ishii S. Asparaginyl endopeptidase of jack bean seeds. Purification, characterization, and high utility in protein sequence analysis. J Biol Chem. 1993 Feb 15;268(5):3525–3529. [PubMed] [Google Scholar]
  2. Agrawal B. B., Goldstein I. J. Protein-carbohydrate interaction. VI. Isolation of concanavalin A by specific adsorption on cross-linked dextran gels. Biochim Biophys Acta. 1967 Oct 23;147(2):262–271. [PubMed] [Google Scholar]
  3. Bowles D. J., Marcus S. E., Pappin D. J., Findlay J. B., Eliopoulos E., Maycox P. R., Burgess J. Posttranslational processing of concanavalin A precursors in jackbean cotyledons. J Cell Biol. 1986 Apr;102(4):1284–1297. doi: 10.1083/jcb.102.4.1284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carrington D. M., Auffret A., Hanke D. E. Polypeptide ligation occurs during post-translational modification of concanavalin A. Nature. 1985 Jan 3;313(5997):64–67. doi: 10.1038/313064a0. [DOI] [PubMed] [Google Scholar]
  5. Chrispeels M. J., Hartl P. M., Sturm A., Faye L. Characterization of the endoplasmic reticulum-associated precursor of concanavalin A. Partial amino acid sequence and lectin activity. J Biol Chem. 1986 Aug 5;261(22):10021–10024. [PubMed] [Google Scholar]
  6. Cunningham B. A., Wang J. L., Waxdal M. J., Edelman G. M. The covalent and three-dimensional structure of concanavalin A. II. Amino acid sequence of cyanogen bromide fragment F3. J Biol Chem. 1975 Feb 25;250(4):1503–1512. [PubMed] [Google Scholar]
  7. Davis E. O., Sedgwick S. G., Colston M. J. Novel structure of the recA locus of Mycobacterium tuberculosis implies processing of the gene product. J Bacteriol. 1991 Sep;173(18):5653–5662. doi: 10.1128/jb.173.18.5653-5662.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ericson M. L., Rödin J., Lenman M., Glimelius K., Josefsson L. G., Rask L. Structure of the rapeseed 1.7 S storage protein, napin, and its precursor. J Biol Chem. 1986 Nov 5;261(31):14576–14581. [PubMed] [Google Scholar]
  9. Gimble F. S., Thorner J. Homing of a DNA endonuclease gene by meiotic gene conversion in Saccharomyces cerevisiae. Nature. 1992 May 28;357(6376):301–306. doi: 10.1038/357301a0. [DOI] [PubMed] [Google Scholar]
  10. Graham J. S., Pearce G., Merryweather J., Titani K., Ericsson L., Ryan C. A. Wound-induced proteinase inhibitors from tomato leaves. I. The cDNA-deduced primary structure of pre-inhibitor I and its post-translational processing. J Biol Chem. 1985 Jun 10;260(11):6555–6560. [PubMed] [Google Scholar]
  11. Gu H. H., Xu J., Gallagher M., Dean G. E. Peptide splicing in the vacuolar ATPase subunit A from Candida tropicalis. J Biol Chem. 1993 Apr 5;268(10):7372–7381. [PubMed] [Google Scholar]
  12. Hara-Nishimura I., Takeuchi Y., Nishimura M. Molecular characterization of a vacuolar processing enzyme related to a putative cysteine proteinase of Schistosoma mansoni. Plant Cell. 1993 Nov;5(11):1651–1659. doi: 10.1105/tpc.5.11.1651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hayashi M., Mori H., Nishimura M., Akazawa T., Hara-Nishimura I. Nucleotide sequence of cloned cDNA coding for pumpkin 11-S globulin beta subunit. Eur J Biochem. 1988 Mar 15;172(3):627–632. doi: 10.1111/j.1432-1033.1988.tb13935.x. [DOI] [PubMed] [Google Scholar]
  14. Hemperly J. J., Hopp T. P., Becker J. W., Cunningham B. A. The chemical characterization of favin, a lectin isolated from Vicia faba. J Biol Chem. 1979 Jul 25;254(14):6803–6810. [PubMed] [Google Scholar]
  15. Higgins T. J., Chandler P. M., Zurawski G., Button S. C., Spencer D. The biosynthesis and primary structure of pea seed lectin. J Biol Chem. 1983 Aug 10;258(15):9544–9549. [PubMed] [Google Scholar]
  16. Hirata R., Ohsumk Y., Nakano A., Kawasaki H., Suzuki K., Anraku Y. Molecular structure of a gene, VMA1, encoding the catalytic subunit of H(+)-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem. 1990 Apr 25;265(12):6726–6733. [PubMed] [Google Scholar]
  17. Hodges R. A., Perler F. B., Noren C. J., Jack W. E. Protein splicing removes intervening sequences in an archaea DNA polymerase. Nucleic Acids Res. 1992 Dec 11;20(23):6153–6157. doi: 10.1093/nar/20.23.6153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hopp T. P., Hemperly J. J., Cunningham B. A. Amino acid sequence and variant forms of favin, a lectin from Vicia faba. J Biol Chem. 1982 Apr 25;257(8):4473–4483. [PubMed] [Google Scholar]
  19. Kane P. M., Yamashiro C. T., Wolczyk D. F., Neff N., Goebl M., Stevens T. H. Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H(+)-adenosine triphosphatase. Science. 1990 Nov 2;250(4981):651–657. doi: 10.1126/science.2146742. [DOI] [PubMed] [Google Scholar]
  20. Lamb F. I., Roberts L. M., Lord J. M. Nucleotide sequence of cloned cDNA coding for preproricin. Eur J Biochem. 1985 Apr 15;148(2):265–270. doi: 10.1111/j.1432-1033.1985.tb08834.x. [DOI] [PubMed] [Google Scholar]
  21. Lord J. M. Precursors of ricin and Ricinus communis agglutinin. Glycosylation and processing during synthesis and intracellular transport. Eur J Biochem. 1985 Jan 15;146(2):411–416. doi: 10.1111/j.1432-1033.1985.tb08667.x. [DOI] [PubMed] [Google Scholar]
  22. Marco Y. A., Thanh V. H., Tumer N. E., Scallon B. J., Nielsen N. C. Cloning and structural analysis of DNA encoding an A2B1a subunit of glycinin. J Biol Chem. 1984 Nov 10;259(21):13436–13441. [PubMed] [Google Scholar]
  23. Marcus S. E., Burgess J., Maycox P. R., Bowles D. J. A study of maturation events in jackbeans (Canavalia ensiformis). Biochem J. 1984 Aug 15;222(1):265–268. doi: 10.1042/bj2220265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Matsushita H., Kato I., Abe Y., Ishii S. [Asparaginylendopeptidase]. Tanpakushitsu Kakusan Koso. 1991 Mar;36(4):730–736. [PubMed] [Google Scholar]
  25. McKenzie G. H., Sawyer W. H., Nichol L. W. The molecular weight and stability of concanavalin A. Biochim Biophys Acta. 1972 Apr 15;263(2):283–293. doi: 10.1016/0005-2795(72)90081-5. [DOI] [PubMed] [Google Scholar]
  26. McKenzie G. H., Sawyer W. H. The binding properties of dimeric and tetrameric concanavalin A. Binding of ligands to noninteracting macromolecular acceptors. J Biol Chem. 1973 Jan 25;248(2):549–556. [PubMed] [Google Scholar]
  27. Min W., Dunn A. J., Jones D. H. Non-glycosylated recombinant pro-concanavalin A is active without polypeptide cleavage. EMBO J. 1992 Apr;11(4):1303–1307. doi: 10.1002/j.1460-2075.1992.tb05174.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Min W., Jones D. H. In vitro splicing of concanavalin A is catalyzed by asparaginyl endopeptidase. Nat Struct Biol. 1994 Aug;1(8):502–504. doi: 10.1038/nsb0894-502. [DOI] [PubMed] [Google Scholar]
  29. Momma T., Negoro T., Hirano H., Matsumoto A., Udaka K., Fukazawa C. Glycinin A5A4B3 mRNA: cDNA cloning and nucleotide sequencing of a splitting storage protein subunit of soybean. Eur J Biochem. 1985 Jun 18;149(3):491–496. doi: 10.1111/j.1432-1033.1985.tb08951.x. [DOI] [PubMed] [Google Scholar]
  30. Perler F. B., Comb D. G., Jack W. E., Moran L. S., Qiang B., Kucera R. B., Benner J., Slatko B. E., Nwankwo D. O., Hempstead S. K. Intervening sequences in an Archaea DNA polymerase gene. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5577–5581. doi: 10.1073/pnas.89.12.5577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Richardson M., Campos F. D., Moreira R. A., Ainouz I. L., Begbie R., Watt W. B., Pusztai A. The complete amino acid sequence of the major alpha subunit of the lectin from the seeds of Dioclea grandiflora (Mart). Eur J Biochem. 1984 Oct 1;144(1):101–111. doi: 10.1111/j.1432-1033.1984.tb08436.x. [DOI] [PubMed] [Google Scholar]
  32. Richardson M., Rougé P., Sousa-Cavada B., Yarwood A. The amino acid sequences of the alpha 1 and alpha 2 subunits of the isolectins from seeds of Lathyrus ochrus (L) DC. FEBS Lett. 1984 Sep 17;175(1):76–81. doi: 10.1016/0014-5793(84)80573-6. [DOI] [PubMed] [Google Scholar]
  33. Scott M. P., Jung R., Muntz K., Nielsen N. C. A protease responsible for post-translational cleavage of a conserved Asn-Gly linkage in glycinin, the major seed storage protein of soybean. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):658–662. doi: 10.1073/pnas.89.2.658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sheldon P. S., Bowles D. J. The glycoprotein precursor of concanavalin A is converted to an active lectin by deglycosylation. EMBO J. 1992 Apr;11(4):1297–1301. doi: 10.1002/j.1460-2075.1992.tb05173.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Shub D. A., Goodrich-Blair H. Protein introns: a new home for endonucleases. Cell. 1992 Oct 16;71(2):183–186. doi: 10.1016/0092-8674(92)90345-d. [DOI] [PubMed] [Google Scholar]
  36. Sticher L., Hofsteenge J., Neuhaus J. M., Boller T., Meins F., Jr Posttranslational processing of a new class of hydroxyproline-containing proteins. Prolyl hydroxylation and C-terminal cleavage of tobacco (Nicotiana tabacum) vacuolar chitinase. Plant Physiol. 1993 Apr;101(4):1239–1247. doi: 10.1104/pp.101.4.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Takahashi T., Nishibe H. Almond glycopeptidase acting on aspartylglycosylamine linkages. Multiplicity and substrate specificity. Biochim Biophys Acta. 1981 Feb 13;657(2):457–467. doi: 10.1016/0005-2744(81)90331-4. [DOI] [PubMed] [Google Scholar]
  38. Wang J. L., Cunningham B. A., Waxdal M. J., Edelman G. M. The covalent and three-dimensional structural of concanavalin A. I. Amino acid sequence of cyanogen bromide fragments F1 and F2. J Biol Chem. 1975 Feb 25;250(4):1490–1502. [PubMed] [Google Scholar]
  39. Xu M. Q., Southworth M. W., Mersha F. B., Hornstra L. J., Perler F. B. In vitro protein splicing of purified precursor and the identification of a branched intermediate. Cell. 1993 Dec 31;75(7):1371–1377. doi: 10.1016/0092-8674(93)90623-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES