Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Dec 15;320(Pt 3):891–895. doi: 10.1042/bj3200891

Role of the 3' untranslated region in the regulation of cytosolic glutathione peroxidase and phospholipid-hydroperoxide glutathione peroxidase gene expression by selenium supply.

G Bermano 1, J R Arthur 1, J E Hesketh 1
PMCID: PMC1218012  PMID: 9003377

Abstract

Selenium is an essential nutrient and synthesis of selenoproteins is affected by limited selenium supply. During selenium deficiency there is a differential regulation of selenoprotein synthesis and gene expression; for example, there is a decrease in abundance of mRNA for cytosolic glutathione peroxidase (cGSH-Px) and a preservation of mRNA for phospholipid-hydroperoxide glutathione peroxidase (PHGSH-Px). This difference is not due to an alteration in the rate of transcription but might reflect differences in translation. The aim of the present work was to assess the role of cGSH-Px and PHGSH-Px 3' untranslated regions (UTRs) in the regulation of selenoprotein mRNA stability and translation by using H4-II-E-C3 cells transfected with different constructs containing a type I iodothyronine deiodinase-coding region linked to different selenoprotein mRNA 3' UTRs. Translational efficiency results showed that the efficiency of the 3' UTRs in permitting selenocysteine incorporation is similar in selenium-replete conditions but, when selenium is limiting, the 3' UTR of cGSH-Px is less efficient than the 3' UTR of PHGSH-Px. The results suggest that the 3' UTR of these selenoprotein mRNA species influences their extent of translation when selenium levels are low. The different sensitivity of the 3' UTRs to selenium deficiency can explain the differential effect that selenium deficiency has on cGSH-Px and PHGSH-Px activity and mRNA levels, stability and translation. This might be partly responsible for channelling selenium for synthesis of PHGSH-Px rather than cGSH-Px.

Full Text

The Full Text of this article is available as a PDF (190.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arthur J. R., Bermano G., Mitchell J. H., Hesketh J. E. Regulation of selenoprotein gene expression and thyroid hormone metabolism. Biochem Soc Trans. 1996 May;24(2):384–388. doi: 10.1042/bst0240384. [DOI] [PubMed] [Google Scholar]
  2. Arthur J. R., Nicol F., Beckett G. J. Hepatic iodothyronine 5'-deiodinase. The role of selenium. Biochem J. 1990 Dec 1;272(2):537–540. doi: 10.1042/bj2720537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bermano G., Arthur J. R., Hesketh J. E. Selective control of cytosolic glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase mRNA stability by selenium supply. FEBS Lett. 1996 Jun 3;387(2-3):157–160. doi: 10.1016/0014-5793(96)00493-0. [DOI] [PubMed] [Google Scholar]
  4. Bermano G., Nicol F., Dyer J. A., Sunde R. A., Beckett G. J., Arthur J. R., Hesketh J. E. Tissue-specific regulation of selenoenzyme gene expression during selenium deficiency in rats. Biochem J. 1995 Oct 15;311(Pt 2):425–430. doi: 10.1042/bj3110425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berry M. J., Banu L., Chen Y. Y., Mandel S. J., Kieffer J. D., Harney J. W., Larsen P. R. Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3' untranslated region. Nature. 1991 Sep 19;353(6341):273–276. doi: 10.1038/353273a0. [DOI] [PubMed] [Google Scholar]
  6. Berry M. J., Banu L., Larsen P. R. Type I iodothyronine deiodinase is a selenocysteine-containing enzyme. Nature. 1991 Jan 31;349(6308):438–440. doi: 10.1038/349438a0. [DOI] [PubMed] [Google Scholar]
  7. Berry M. J., Kieffer J. D., Harney J. W., Larsen P. R. Selenocysteine confers the biochemical properties characteristic of the type I iodothyronine deiodinase. J Biol Chem. 1991 Aug 5;266(22):14155–14158. [PubMed] [Google Scholar]
  8. Burk R. F., Hill K. E. Regulation of selenoproteins. Annu Rev Nutr. 1993;13:65–81. doi: 10.1146/annurev.nu.13.070193.000433. [DOI] [PubMed] [Google Scholar]
  9. Chambers I., Frampton J., Goldfarb P., Affara N., McBain W., Harrison P. R. The structure of the mouse glutathione peroxidase gene: the selenocysteine in the active site is encoded by the 'termination' codon, TGA. EMBO J. 1986 Jun;5(6):1221–1227. doi: 10.1002/j.1460-2075.1986.tb04350.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  11. Erickson J. M., Rushford C. L., Dorney D. J., Wilson G. N., Schmickel R. D. Structure and variation of human ribosomal DNA: molecular analysis of cloned fragments. Gene. 1981 Dec;16(1-3):1–9. doi: 10.1016/0378-1119(81)90055-x. [DOI] [PubMed] [Google Scholar]
  12. Kollmus H., Flohé L., McCarthy J. E. Analysis of eukaryotic mRNA structures directing cotranslational incorporation of selenocysteine. Nucleic Acids Res. 1996 Apr 1;24(7):1195–1201. doi: 10.1093/nar/24.7.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Larsen P. R., Berry M. J. Nutritional and hormonal regulation of thyroid hormone deiodinases. Annu Rev Nutr. 1995;15:323–352. doi: 10.1146/annurev.nu.15.070195.001543. [DOI] [PubMed] [Google Scholar]
  14. Levander O. A. A global view of human selenium nutrition. Annu Rev Nutr. 1987;7:227–250. doi: 10.1146/annurev.nu.07.070187.001303. [DOI] [PubMed] [Google Scholar]
  15. Low S. C., Berry M. J. Knowing when not to stop: selenocysteine incorporation in eukaryotes. Trends Biochem Sci. 1996 Jun;21(6):203–208. [PubMed] [Google Scholar]
  16. Paglia D. E., Valentine W. N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967 Jul;70(1):158–169. [PubMed] [Google Scholar]
  17. Saedi M. S., Smith C. G., Frampton J., Chambers I., Harrison P. R., Sunde R. A. Effect of selenium status on mRNA levels for glutathione peroxidase in rat liver. Biochem Biophys Res Commun. 1988 Jun 16;153(2):855–861. doi: 10.1016/s0006-291x(88)81174-4. [DOI] [PubMed] [Google Scholar]
  18. Salvatore D., Low S. C., Berry M., Maia A. L., Harney J. W., Croteau W., St Germain D. L., Larsen P. R. Type 3 lodothyronine deiodinase: cloning, in vitro expression, and functional analysis of the placental selenoenzyme. J Clin Invest. 1995 Nov;96(5):2421–2430. doi: 10.1172/JCI118299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shen Q., McQuilkin P. A., Newburger P. E. RNA-binding proteins that specifically recognize the selenocysteine insertion sequence of human cellular glutathione peroxidase mRNA. J Biol Chem. 1995 Dec 22;270(51):30448–30452. doi: 10.1074/jbc.270.51.30448. [DOI] [PubMed] [Google Scholar]
  20. Sunde R. A., Dyer J. A., Moran T. V., Evenson J. K., Sugimoto M. Phospholipid hydroperoxide glutathione peroxidase: full-length pig blastocyst cDNA sequence and regulation by selenium status. Biochem Biophys Res Commun. 1993 Jun 30;193(3):905–911. doi: 10.1006/bbrc.1993.1711. [DOI] [PubMed] [Google Scholar]
  21. Weitzel F., Wendel A. Selenoenzymes regulate the activity of leukocyte 5-lipoxygenase via the peroxide tone. J Biol Chem. 1993 Mar 25;268(9):6288–6292. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES