Abstract
Protein geranylgeranyltransferase type-I (GGTase-I) transfers a geranylgeranyl group from the prenyl donor geranylgeranyl diphosphate (GGPP) to the cysteine residue of substrate proteins containing a C-terminal CaaX-motif (a sequence motif of proteins consisting of an invariant Cys residue fourth from the C-terminus). The GGTase-I heterodimer contains one atom of zinc, and this metal is required for enzyme activity. In this regard, GGTase-I is similar to the related enzyme protein farnesyltransferase (FTase); the latter enzyme also requires Mg2+ for activity. The current studies were undertaken in an attempt to explore further the role of bivalent metal ions in the activity of GGTase-I. Surprisingly, we found that GGTase-I and FTase have different metal requirements. Specifically, in marked contrast to FTase, GGTase-I does not require Mg2+ for activity. Direct binding assays, including a novel fluorescence-based technique, were employed to obtain quantitative information on the interaction of substrates with GGTase-I. Using these assays, we demonstrate that the Zn2+ in GGTase-I is required for peptide, but not for isoprenoid, substrate binding. Moreover, binding of GGPP protects GGTase-I from inactivation by zinc-chelating reagents; this protective effect is not seen with binding of peptide substrates. Metal substitution studies show that the Zn2+ in GGTase-I can be replaced by Cd2+, and that the Cd form of GGTase-I has altered specificity with regard to utilization of both peptide and isoprenoid substrates. The significance of these findings in relation to proposed mechanisms for the GGTase-I reaction is discussed.
Full Text
The Full Text of this article is available as a PDF (484.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Casey P. J., Seabra M. C. Protein prenyltransferases. J Biol Chem. 1996 Mar 8;271(10):5289–5292. doi: 10.1074/jbc.271.10.5289. [DOI] [PubMed] [Google Scholar]
- Casey P. J., Thissen J. A., Moomaw J. F. Enzymatic modification of proteins with a geranylgeranyl isoprenoid. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8631–8635. doi: 10.1073/pnas.88.19.8631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen W. J., Andres D. A., Goldstein J. L., Brown M. S. Cloning and expression of a cDNA encoding the alpha subunit of rat p21ras protein farnesyltransferase. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11368–11372. doi: 10.1073/pnas.88.24.11368. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen W. J., Andres D. A., Goldstein J. L., Russell D. W., Brown M. S. cDNA cloning and expression of the peptide-binding beta subunit of rat p21ras farnesyltransferase, the counterpart of yeast DPR1/RAM1. Cell. 1991 Jul 26;66(2):327–334. doi: 10.1016/0092-8674(91)90622-6. [DOI] [PubMed] [Google Scholar]
- Chen W. J., Moomaw J. F., Overton L., Kost T. A., Casey P. J. High level expression of mammalian protein farnesyltransferase in a baculovirus system. The purified protein contains zinc. J Biol Chem. 1993 May 5;268(13):9675–9680. [PubMed] [Google Scholar]
- Clarke S. Protein isoprenylation and methylation at carboxyl-terminal cysteine residues. Annu Rev Biochem. 1992;61:355–386. doi: 10.1146/annurev.bi.61.070192.002035. [DOI] [PubMed] [Google Scholar]
- Dolence J. M., Poulter C. D. A mechanism for posttranslational modifications of proteins by yeast protein farnesyltransferase. Proc Natl Acad Sci U S A. 1995 May 23;92(11):5008–5011. doi: 10.1073/pnas.92.11.5008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Finegold A. A., Johnson D. I., Farnsworth C. C., Gelb M. H., Judd S. R., Glomset J. A., Tamanoi F. Protein geranylgeranyltransferase of Saccharomyces cerevisiae is specific for Cys-Xaa-Xaa-Leu motif proteins and requires the CDC43 gene product but not the DPR1 gene product. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4448–4452. doi: 10.1073/pnas.88.10.4448. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujiyama A., Matsumoto K., Tamanoi F. A novel yeast mutant defective in the processing of ras proteins: assessment of the effect of the mutation on processing steps. EMBO J. 1987 Jan;6(1):223–228. doi: 10.1002/j.1460-2075.1987.tb04742.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furfine E. S., Leban J. J., Landavazo A., Moomaw J. F., Casey P. J. Protein farnesyltransferase: kinetics of farnesyl pyrophosphate binding and product release. Biochemistry. 1995 May 23;34(20):6857–6862. doi: 10.1021/bi00020a032. [DOI] [PubMed] [Google Scholar]
- Glomset J. A., Farnsworth C. C. Role of protein modification reactions in programming interactions between ras-related GTPases and cell membranes. Annu Rev Cell Biol. 1994;10:181–205. doi: 10.1146/annurev.cb.10.110194.001145. [DOI] [PubMed] [Google Scholar]
- Goldstein J. L., Brown M. S., Stradley S. J., Reiss Y., Gierasch L. M. Nonfarnesylated tetrapeptide inhibitors of protein farnesyltransferase. J Biol Chem. 1991 Aug 25;266(24):15575–15578. [PubMed] [Google Scholar]
- He B., Chen P., Chen S. Y., Vancura K. L., Michaelis S., Powers S. RAM2, an essential gene of yeast, and RAM1 encode the two polypeptide components of the farnesyltransferase that prenylates a-factor and Ras proteins. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11373–11377. doi: 10.1073/pnas.88.24.11373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horiuchi H., Kawata M., Katayama M., Yoshida Y., Musha T., Ando S., Takai Y. A novel prenyltransferase for a small GTP-binding protein having a C-terminal Cys-Ala-Cys structure. J Biol Chem. 1991 Sep 15;266(26):16981–16984. [PubMed] [Google Scholar]
- Kohl N. E., Diehl R. E., Schaber M. D., Rands E., Soderman D. D., He B., Moores S. L., Pompliano D. L., Ferro-Novick S., Powers S. Structural homology among mammalian and Saccharomyces cerevisiae isoprenyl-protein transferases. J Biol Chem. 1991 Oct 5;266(28):18884–18888. [PubMed] [Google Scholar]
- Moomaw J. F., Casey P. J. Mammalian protein geranylgeranyltransferase. Subunit composition and metal requirements. J Biol Chem. 1992 Aug 25;267(24):17438–17443. [PubMed] [Google Scholar]
- Moores S. L., Schaber M. D., Mosser S. D., Rands E., O'Hara M. B., Garsky V. M., Marshall M. S., Pompliano D. L., Gibbs J. B. Sequence dependence of protein isoprenylation. J Biol Chem. 1991 Aug 5;266(22):14603–14610. [PubMed] [Google Scholar]
- Myers L. C., Jackow F., Verdine G. L. Metal dependence of transcriptional switching in Escherichia coli Ada. J Biol Chem. 1995 Mar 24;270(12):6664–6670. doi: 10.1074/jbc.270.12.6664. [DOI] [PubMed] [Google Scholar]
- Myers L. C., Terranova M. P., Ferentz A. E., Wagner G., Verdine G. L. Repair of DNA methylphosphotriesters through a metalloactivated cysteine nucleophile. Science. 1993 Aug 27;261(5125):1164–1167. doi: 10.1126/science.8395079. [DOI] [PubMed] [Google Scholar]
- Omer C. A., Kral A. M., Diehl R. E., Prendergast G. C., Powers S., Allen C. M., Gibbs J. B., Kohl N. E. Characterization of recombinant human farnesyl-protein transferase: cloning, expression, farnesyl diphosphate binding, and functional homology with yeast prenyl-protein transferases. Biochemistry. 1993 May 18;32(19):5167–5176. doi: 10.1021/bi00070a028. [DOI] [PubMed] [Google Scholar]
- Pickett W. C., Zhang F. L., Silverstrim C., Schow S. R., Wick M. M., Kerwar S. S. A fluorescence assay for geranylgeranyl transferase type I. Anal Biochem. 1995 Feb 10;225(1):60–63. doi: 10.1006/abio.1995.1108. [DOI] [PubMed] [Google Scholar]
- Pompliano D. L., Schaber M. D., Mosser S. D., Omer C. A., Shafer J. A., Gibbs J. B. Isoprenoid diphosphate utilization by recombinant human farnesyl:protein transferase: interactive binding between substrates and a preferred kinetic pathway. Biochemistry. 1993 Aug 17;32(32):8341–8347. doi: 10.1021/bi00083a038. [DOI] [PubMed] [Google Scholar]
- Powers S., Michaelis S., Broek D., Santa Anna S., Field J., Herskowitz I., Wigler M. RAM, a gene of yeast required for a functional modification of RAS proteins and for production of mating pheromone a-factor. Cell. 1986 Nov 7;47(3):413–422. doi: 10.1016/0092-8674(86)90598-2. [DOI] [PubMed] [Google Scholar]
- Reiss Y., Brown M. S., Goldstein J. L. Divalent cation and prenyl pyrophosphate specificities of the protein farnesyltransferase from rat brain, a zinc metalloenzyme. J Biol Chem. 1992 Mar 25;267(9):6403–6408. [PubMed] [Google Scholar]
- Reiss Y., Goldstein J. L., Seabra M. C., Casey P. J., Brown M. S. Inhibition of purified p21ras farnesyl:protein transferase by Cys-AAX tetrapeptides. Cell. 1990 Jul 13;62(1):81–88. doi: 10.1016/0092-8674(90)90242-7. [DOI] [PubMed] [Google Scholar]
- Reiss Y., Seabra M. C., Armstrong S. A., Slaughter C. A., Goldstein J. L., Brown M. S. Nonidentical subunits of p21H-ras farnesyltransferase. Peptide binding and farnesyl pyrophosphate carrier functions. J Biol Chem. 1991 Jun 5;266(16):10672–10677. [PubMed] [Google Scholar]
- Schafer W. R., Rine J. Protein prenylation: genes, enzymes, targets, and functions. Annu Rev Genet. 1992;26:209–237. doi: 10.1146/annurev.ge.26.120192.001233. [DOI] [PubMed] [Google Scholar]
- Seabra M. C., Brown M. S., Slaughter C. A., Südhof T. C., Goldstein J. L. Purification of component A of Rab geranylgeranyl transferase: possible identity with the choroideremia gene product. Cell. 1992 Sep 18;70(6):1049–1057. doi: 10.1016/0092-8674(92)90253-9. [DOI] [PubMed] [Google Scholar]
- Seabra M. C., Reiss Y., Casey P. J., Brown M. S., Goldstein J. L. Protein farnesyltransferase and geranylgeranyltransferase share a common alpha subunit. Cell. 1991 May 3;65(3):429–434. doi: 10.1016/0092-8674(91)90460-g. [DOI] [PubMed] [Google Scholar]
- Yokoyama K., Gelb M. H. Purification of a mammalian protein geranylgeranyltransferase. Formation and catalytic properties of an enzyme-geranylgeranyl pyrophosphate complex. J Biol Chem. 1993 Feb 25;268(6):4055–4060. [PubMed] [Google Scholar]
- Yokoyama K., Goodwin G. W., Ghomashchi F., Glomset J. A., Gelb M. H. A protein geranylgeranyltransferase from bovine brain: implications for protein prenylation specificity. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5302–5306. doi: 10.1073/pnas.88.12.5302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yokoyama K., McGeady P., Gelb M. H. Mammalian protein geranylgeranyltransferase-I: substrate specificity, kinetic mechanism, metal requirements, and affinity labeling. Biochemistry. 1995 Jan 31;34(4):1344–1354. doi: 10.1021/bi00004a029. [DOI] [PubMed] [Google Scholar]
- Zhang F. L., Casey P. J. Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem. 1996;65:241–269. doi: 10.1146/annurev.bi.65.070196.001325. [DOI] [PubMed] [Google Scholar]
- Zhang F. L., Diehl R. E., Kohl N. E., Gibbs J. B., Giros B., Casey P. J., Omer C. A. cDNA cloning and expression of rat and human protein geranylgeranyltransferase type-I. J Biol Chem. 1994 Feb 4;269(5):3175–3180. [PubMed] [Google Scholar]
- Zhang F. L., Fu H. W., Casey P. J., Bishop W. R. Substitution of cadmium for zinc in farnesyl:protein transferase alters its substrate specificity. Biochemistry. 1996 Jun 25;35(25):8166–8171. doi: 10.1021/bi960574+. [DOI] [PubMed] [Google Scholar]
- Zhang F. L., Moomaw J. F., Casey P. J. Properties and kinetic mechanism of recombinant mammalian protein geranylgeranyltransferase type I. J Biol Chem. 1994 Sep 23;269(38):23465–23470. [PubMed] [Google Scholar]