Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Dec 15;320(Pt 3):939–946. doi: 10.1042/bj3200939

Trypsin stimulates proteinase-activated receptor-2-dependent and -independent activation of mitogen-activated protein kinases.

C M Belham 1, R J Tate 1, P H Scott 1, A D Pemberton 1, H R Miller 1, R M Wadsworth 1, G W Gould 1, R Plevin 1
PMCID: PMC1218019  PMID: 9003384

Abstract

We have examined protease-mediated activation of the mitogen-activated protein (MAP) kinase cascade in rat aortic smooth-muscle cells and bovine pulmonary arterial fibroblasts. Exposure of smooth-muscle cells to trypsin evoked rapid and transient activation of c-Raf-1, MAP kinase kinase 1 and 2 and MAP kinase that was sensitive to inhibition by soybean trypsin inhibitor. The actions of trypsin were closely mimicked by the proteinase-activated receptor 2 (PAR-2)-activating peptide sequence SLIGRL but not LSIGRL. Peak MAP kinase activation in response to both trypsin and SLIGRL was also dependent on concentration, with EC50 values of 12.1 +/- 3.4 nM and 62.5 +/- 4.5 microM respectively. Under conditions where MAP kinase activation by SLIGRL was completely desensitized by prior exposure of smooth-muscle cells to the peptide, trypsin-stimulated MAP kinase activity was markedly attenuated (78.9 +/- 15.1% desensitization), whereas the response to thrombin was only marginally affected (16.6 +/- 12.1% desensitization). Trypsin and SLIGRL also weakly stimulated the activation of the MAP kinase homologue p38 in smooth-muscle cells without any detectable activation of c-Jun N-terminal kinase. Strong activation of the MAP kinase cascade and modest activation of p38 by trypsin were also observed in fibroblasts, although in this cell type these effects were not mimicked by SLIGRL nor by the thrombin receptor-activating peptide SFLLRNPNDKYEPF. Reverse transcriptase-PCR analysis confirmed the presence of PAR-2 mRNA in smooth-muscle cells but not fibroblasts. Our results suggest that in vascular smooth-muscle cells, trypsin stimulates the activation of the MAP kinase cascade relatively selectively, in a manner consistent with an interaction with the recently described PAR-2. Activation of MAP kinase by trypsin in vascular fibroblasts, however, seems to be independent of PAR-2 and occurs by an undefined mechanism possibly involving novel receptor species.

Full Text

The Full Text of this article is available as a PDF (383.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn N. G., Seger R., Krebs E. G. The mitogen-activated protein kinase activator. Curr Opin Cell Biol. 1992 Dec;4(6):992–999. doi: 10.1016/0955-0674(92)90131-u. [DOI] [PubMed] [Google Scholar]
  2. Anderson N. G., Maller J. L., Tonks N. K., Sturgill T. W. Requirement for integration of signals from two distinct phosphorylation pathways for activation of MAP kinase. Nature. 1990 Feb 15;343(6259):651–653. doi: 10.1038/343651a0. [DOI] [PubMed] [Google Scholar]
  3. Bohm S. K., Kong W., Bromme D., Smeekens S. P., Anderson D. C., Connolly A., Kahn M., Nelken N. A., Coughlin S. R., Payan D. G. Molecular cloning, expression and potential functions of the human proteinase-activated receptor-2. Biochem J. 1996 Mar 15;314(Pt 3):1009–1016. doi: 10.1042/bj3141009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burgering B. M., Pronk G. J., van Weeren P. C., Chardin P., Bos J. L. cAMP antagonizes p21ras-directed activation of extracellular signal-regulated kinase 2 and phosphorylation of mSos nucleotide exchange factor. EMBO J. 1993 Nov;12(11):4211–4220. doi: 10.1002/j.1460-2075.1993.tb06105.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cano E., Mahadevan L. C. Parallel signal processing among mammalian MAPKs. Trends Biochem Sci. 1995 Mar;20(3):117–122. doi: 10.1016/s0968-0004(00)88978-1. [DOI] [PubMed] [Google Scholar]
  6. Childs T. J., Watson M. H., Sanghera J. S., Campbell D. L., Pelech S. L., Mak A. S. Phosphorylation of smooth muscle caldesmon by mitogen-activated protein (MAP) kinase and expression of MAP kinase in differentiated smooth muscle cells. J Biol Chem. 1992 Nov 15;267(32):22853–22859. [PubMed] [Google Scholar]
  7. Cook S. J., McCormick F. Inhibition by cAMP of Ras-dependent activation of Raf. Science. 1993 Nov 12;262(5136):1069–1072. doi: 10.1126/science.7694367. [DOI] [PubMed] [Google Scholar]
  8. Coughlin S. R. Protease-activated receptors start a family. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9200–9202. doi: 10.1073/pnas.91.20.9200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dérijard B., Hibi M., Wu I. H., Barrett T., Su B., Deng T., Karin M., Davis R. J. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell. 1994 Mar 25;76(6):1025–1037. doi: 10.1016/0092-8674(94)90380-8. [DOI] [PubMed] [Google Scholar]
  10. Gille H., Sharrocks A. D., Shaw P. E. Phosphorylation of transcription factor p62TCF by MAP kinase stimulates ternary complex formation at c-fos promoter. Nature. 1992 Jul 30;358(6385):414–417. doi: 10.1038/358414a0. [DOI] [PubMed] [Google Scholar]
  11. Grand R. J., Turnell A. S., Grabham P. W. Cellular consequences of thrombin-receptor activation. Biochem J. 1996 Jan 15;313(Pt 2):353–368. doi: 10.1042/bj3130353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hein L., Ishii K., Coughlin S. R., Kobilka B. K. Intracellular targeting and trafficking of thrombin receptors. A novel mechanism for resensitization of a G protein-coupled receptor. J Biol Chem. 1994 Nov 4;269(44):27719–27726. [PubMed] [Google Scholar]
  13. Hollenberg M. D. Protease-mediated signalling: new paradigms for cell regulation and drug development. Trends Pharmacol Sci. 1996 Jan;17(1):3–6. doi: 10.1016/0165-6147(96)81562-8. [DOI] [PubMed] [Google Scholar]
  14. Kable E. P., Monteith G. R., Roufogalis B. D. The effect of thrombin and serine proteases on intracellular Ca2+ in rat aortic smooth muscle cells. Cell Signal. 1995 Feb;7(2):123–129. doi: 10.1016/0898-6568(94)00075-m. [DOI] [PubMed] [Google Scholar]
  15. Kolch W., Heidecker G., Kochs G., Hummel R., Vahidi H., Mischak H., Finkenzeller G., Marmé D., Rapp U. R. Protein kinase C alpha activates RAF-1 by direct phosphorylation. Nature. 1993 Jul 15;364(6434):249–252. doi: 10.1038/364249a0. [DOI] [PubMed] [Google Scholar]
  16. Kyriakis J. M., App H., Zhang X. F., Banerjee P., Brautigan D. L., Rapp U. R., Avruch J. Raf-1 activates MAP kinase-kinase. Nature. 1992 Jul 30;358(6385):417–421. doi: 10.1038/358417a0. [DOI] [PubMed] [Google Scholar]
  17. Kyriakis J. M., Banerjee P., Nikolakaki E., Dai T., Rubie E. A., Ahmad M. F., Avruch J., Woodgett J. R. The stress-activated protein kinase subfamily of c-Jun kinases. Nature. 1994 May 12;369(6476):156–160. doi: 10.1038/369156a0. [DOI] [PubMed] [Google Scholar]
  18. Lum H., Andersen T. T., Siflinger-Birnboim A., Tiruppathi C., Goligorsky M. S., Fenton J. W., 2nd, Malik A. B. Thrombin receptor peptide inhibits thrombin-induced increase in endothelial permeability by receptor desensitization. J Cell Biol. 1993 Mar;120(6):1491–1499. doi: 10.1083/jcb.120.6.1491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Malarkey K., Belham C. M., Paul A., Graham A., McLees A., Scott P. H., Plevin R. The regulation of tyrosine kinase signalling pathways by growth factor and G-protein-coupled receptors. Biochem J. 1995 Jul 15;309(Pt 2):361–375. doi: 10.1042/bj3090361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Malarkey K., McLees A., Paul A., Gould G. W., Plevin R. The role of protein kinase C in activation and termination of mitogen-activated protein kinase activity in angiotensin II-stimulated rat aortic smooth-muscle cells. Cell Signal. 1996 Feb;8(2):123–129. doi: 10.1016/0898-6568(95)02036-5. [DOI] [PubMed] [Google Scholar]
  21. Matsuda S., Kosako H., Takenaka K., Moriyama K., Sakai H., Akiyama T., Gotoh Y., Nishida E. Xenopus MAP kinase activator: identification and function as a key intermediate in the phosphorylation cascade. EMBO J. 1992 Mar;11(3):973–982. doi: 10.1002/j.1460-2075.1992.tb05136.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McLaughlin M. M., Kumar S., McDonnell P. C., Van Horn S., Lee J. C., Livi G. P., Young P. R. Identification of mitogen-activated protein (MAP) kinase-activated protein kinase-3, a novel substrate of CSBP p38 MAP kinase. J Biol Chem. 1996 Apr 5;271(14):8488–8492. doi: 10.1074/jbc.271.14.8488. [DOI] [PubMed] [Google Scholar]
  23. McNamara C. A., Sarembock I. J., Gimple L. W., Fenton J. W., 2nd, Coughlin S. R., Owens G. K. Thrombin stimulates proliferation of cultured rat aortic smooth muscle cells by a proteolytically activated receptor. J Clin Invest. 1993 Jan;91(1):94–98. doi: 10.1172/JCI116206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mirza H., Yatsula V., Bahou W. F. The proteinase activated receptor-2 (PAR-2) mediates mitogenic responses in human vascular endothelial cells. J Clin Invest. 1996 Apr 1;97(7):1705–1714. doi: 10.1172/JCI118597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nakielny S., Cohen P., Wu J., Sturgill T. MAP kinase activator from insulin-stimulated skeletal muscle is a protein threonine/tyrosine kinase. EMBO J. 1992 Jun;11(6):2123–2129. doi: 10.1002/j.1460-2075.1992.tb05271.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nystedt S., Emilsson K., Wahlestedt C., Sundelin J. Molecular cloning of a potential proteinase activated receptor. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9208–9212. doi: 10.1073/pnas.91.20.9208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nystedt S., Larsson A. K., Aberg H., Sundelin J. The mouse proteinase-activated receptor-2 cDNA and gene. Molecular cloning and functional expression. J Biol Chem. 1995 Mar 17;270(11):5950–5955. doi: 10.1074/jbc.270.11.5950. [DOI] [PubMed] [Google Scholar]
  28. Pagès G., Lenormand P., L'Allemain G., Chambard J. C., Meloche S., Pouysségur J. Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8319–8323. doi: 10.1073/pnas.90.18.8319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Raingeaud J., Gupta S., Rogers J. S., Dickens M., Han J., Ulevitch R. J., Davis R. J. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem. 1995 Mar 31;270(13):7420–7426. doi: 10.1074/jbc.270.13.7420. [DOI] [PubMed] [Google Scholar]
  30. Reuter C. W., Catling A. D., Jelinek T., Weber M. J. Biochemical analysis of MEK activation in NIH3T3 fibroblasts. Identification of B-Raf and other activators. J Biol Chem. 1995 Mar 31;270(13):7644–7655. doi: 10.1074/jbc.270.13.7644. [DOI] [PubMed] [Google Scholar]
  31. Rouse J., Cohen P., Trigon S., Morange M., Alonso-Llamazares A., Zamanillo D., Hunt T., Nebreda A. R. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell. 1994 Sep 23;78(6):1027–1037. doi: 10.1016/0092-8674(94)90277-1. [DOI] [PubMed] [Google Scholar]
  32. Santulli R. J., Derian C. K., Darrow A. L., Tomko K. A., Eckardt A. J., Seiberg M., Scarborough R. M., Andrade-Gordon P. Evidence for the presence of a protease-activated receptor distinct from the thrombin receptor in human keratinocytes. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9151–9155. doi: 10.1073/pnas.92.20.9151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Vouret-Craviari V., Van Obberghen-Schilling E., Rasmussen U. B., Pavirani A., Lecocq J. P., Pouysségur J. Synthetic alpha-thrombin receptor peptides activate G protein-coupled signaling pathways but are unable to induce mitogenesis. Mol Biol Cell. 1992 Jan;3(1):95–102. doi: 10.1091/mbc.3.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Vouret-Craviari V., Van Obberghen-Schilling E., Scimeca J. C., Van Obberghen E., Pouysségur J. Differential activation of p44mapk (ERK1) by alpha-thrombin and thrombin-receptor peptide agonist. Biochem J. 1993 Jan 1;289(Pt 1):209–214. doi: 10.1042/bj2890209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Vu T. K., Hung D. T., Wheaton V. I., Coughlin S. R. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell. 1991 Mar 22;64(6):1057–1068. doi: 10.1016/0092-8674(91)90261-v. [DOI] [PubMed] [Google Scholar]
  36. Watson A. J., Hogan A., Hahnel A., Wiemer K. E., Schultz G. A. Expression of growth factor ligand and receptor genes in the preimplantation bovine embryo. Mol Reprod Dev. 1992 Feb;31(2):87–95. doi: 10.1002/mrd.1080310202. [DOI] [PubMed] [Google Scholar]
  37. Wu J., Dent P., Jelinek T., Wolfman A., Weber M. J., Sturgill T. W. Inhibition of the EGF-activated MAP kinase signaling pathway by adenosine 3',5'-monophosphate. Science. 1993 Nov 12;262(5136):1065–1069. doi: 10.1126/science.7694366. [DOI] [PubMed] [Google Scholar]
  38. Zhong C., Hayzer D. J., Corson M. A., Runge M. S. Molecular cloning of the rat vascular smooth muscle thrombin receptor. Evidence for in vitro regulation by basic fibroblast growth factor. J Biol Chem. 1992 Aug 25;267(24):16975–16979. [PubMed] [Google Scholar]
  39. al-Ani B., Saifeddine M., Hollenberg M. D. Detection of functional receptors for the proteinase-activated-receptor-2-activating polypeptide, SLIGRL-NH2, in rat vascular and gastric smooth muscle. Can J Physiol Pharmacol. 1995 Aug;73(8):1203–1207. doi: 10.1139/y95-172. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES