Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Dec 15;320(Pt 3):947–956. doi: 10.1042/bj3200947

The characterization of endosomal insulin degradation intermediates and their sequence of production.

P J Seabright 1, G D Smith 1
PMCID: PMC1218020  PMID: 9003385

Abstract

Insulin degradation within isolated rat liver endosomes was studied in vitro with the aid of three 125I-insulin isomers specifically labelled at tyrosine (A14, B16 and B26). Chloroquine and 1,10-phenanthroline were used to minimize insulin proteolysis during endosome preparation, whereas the manipulation of endosomal processing of insulin in vitro by Co2+ ions (to activate) and 1,10-phenanthroline (to inhibit) permitted the study of degradation intermediates and their time-dependent production. Structural and kinetic analysis of intermediates isolated from both intra- and extra-endosomal compartments allowed the determination of major cleavage sites and the probable sequence of proteolytic events. It was found that 125I-tyrosine is the ultimate labelled degradation product of all iodo-insulin isomers, suggesting that endosomal proteases are able to degrade insulin to the level of its constituent amino acids. 125I-tyrosine was also the only radiolabelled product able to cross the endosomal membrane. Intra-endosomal insulin degradation proceeds via two inter-related cleavage routes after metalloendoprotease cleavage of the B-chain. One pathway results from an initial cleavage in the centre region of the B-chain (B7-19), probably at B14-15, whereas the major route results from a cleavage at B24-25. B24-25 cleavage removes the B-chain C-terminal hexapeptide (B25-30), which is subsequently cleaved by an aminopeptidase activity to produce first the pentapeptide B26-30 and then 125I-tyrosine. The isolation of intact radiolabelled A-chain from the degradation of 125I-[A14]-insulin suggests that further degradation of proteolytic intermediates containing cleaved B-chain proceeds via interchain disulphide reduction. The A-chain is then processed by several cleavages, one of which occurs at A13-14.

Full Text

The Full Text of this article is available as a PDF (547.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson H. C., Kohn L. D., Bernardini I., Blom H. J., Tietze F., Gahl W. A. Characterization of lysosomal monoiodotyrosine transport in rat thyroid cells. Evidence for transport by system h. J Biol Chem. 1990 Jul 5;265(19):10950–10954. [PubMed] [Google Scholar]
  2. Authier F., Rachubinski R. A., Posner B. I., Bergeron J. J. Endosomal proteolysis of insulin by an acidic thiol metalloprotease unrelated to insulin degrading enzyme. J Biol Chem. 1994 Jan 28;269(4):3010–3016. [PubMed] [Google Scholar]
  3. Backer J. M., Kahn C. R., White M. F. The dissociation and degradation of internalized insulin occur in the endosomes of rat hepatoma cells. J Biol Chem. 1990 Sep 5;265(25):14828–14835. [PubMed] [Google Scholar]
  4. Ballotti R., Kowalski A., White M. F., Le Marchand-Brustel Y., Van Obberghen E. Insulin stimulates tyrosine phosphorylation of its receptor beta-subunit in intact rat hepatocytes. Biochem J. 1987 Jan 1;241(1):99–104. doi: 10.1042/bj2410099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carpentier J. L., Fehlmann M., Van Obberghen E., Gorden P., Orci L. Redistribution of 125I-insulin on the surface of rat hepatocytes as a function of dissociation time. Diabetes. 1985 Oct;34(10):1002–1007. doi: 10.2337/diab.34.10.1002. [DOI] [PubMed] [Google Scholar]
  6. Christensen J. R., Smith G. D., Peters T. J. Characterization of insulin uptake into subcellular fractions of perfused rat liver using two different iodinated tracers. Cell Biochem Funct. 1985 Jan;3(1):13–19. doi: 10.1002/cbf.290030105. [DOI] [PubMed] [Google Scholar]
  7. Clot J. P., Janicot M., Fouque F., Desbuquois B., Haumont P. Y., Lederer F. Characterization of insulin degradation products generated in liver endosomes: in vivo and in vitro studies. Mol Cell Endocrinol. 1990 Sep 10;72(3):175–185. doi: 10.1016/0303-7207(90)90142-u. [DOI] [PubMed] [Google Scholar]
  8. Crowther N. J., Xiao B., Jørgensen P. N., Dodson G. G., Hales C. N. Epitope analysis of human insulin and intact proinsulin. Protein Eng. 1994 Jan;7(1):137–144. doi: 10.1093/protein/7.1.137. [DOI] [PubMed] [Google Scholar]
  9. Ding L., Becker A. B., Suzuki A., Roth R. A. Comparison of the enzymatic and biochemical properties of human insulin-degrading enzyme and Escherichia coli protease III. J Biol Chem. 1992 Feb 5;267(4):2414–2420. [PubMed] [Google Scholar]
  10. Doherty J. J., 2nd, Kay D. G., Lai W. H., Posner B. I., Bergeron J. J. Selective degradation of insulin within rat liver endosomes. J Cell Biol. 1990 Jan;110(1):35–42. doi: 10.1083/jcb.110.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Duckworth W. C., Hamel F. G., Peavy D. E., Liepnieks J. J., Ryan M. P., Hermodson M. A., Frank B. H. Degradation products of insulin generated by hepatocytes and by insulin protease. J Biol Chem. 1988 Feb 5;263(4):1826–1833. [PubMed] [Google Scholar]
  12. Duckworth W. C. Insulin degradation: mechanisms, products, and significance. Endocr Rev. 1988 Aug;9(3):319–345. doi: 10.1210/edrv-9-3-319. [DOI] [PubMed] [Google Scholar]
  13. Feder J. Studies on the specificity of Bacillus subtilis neutral protease with synthetic substrates. Biochemistry. 1967 Jul;6(7):2088–2093. doi: 10.1021/bi00859a028. [DOI] [PubMed] [Google Scholar]
  14. Frank B. H., Peavy D. E., Hooker C. S., Duckworth W. C. Receptor binding properties of monoiodotyrosyl insulin isomers purified by high performance liquid chromatography. Diabetes. 1983 Aug;32(8):705–711. doi: 10.2337/diab.32.8.705. [DOI] [PubMed] [Google Scholar]
  15. Hamel F. G., Mahoney M. J., Duckworth W. C. Degradation of intraendosomal insulin by insulin-degrading enzyme without acidification. Diabetes. 1991 Apr;40(4):436–443. doi: 10.2337/diab.40.4.436. [DOI] [PubMed] [Google Scholar]
  16. Hamel F. G., Posner B. I., Bergeron J. J., Frank B. H., Duckworth W. C. Isolation of insulin degradation products from endosomes derived from intact rat liver. J Biol Chem. 1988 May 15;263(14):6703–6708. [PubMed] [Google Scholar]
  17. Hari J., Shii K., Roth R. A. In vivo association of [125I]-insulin with a cytosolic insulin-degrading enzyme: detection by covalent cross-linking and immunoprecipitation with a monoclonal antibody. Endocrinology. 1987 Feb;120(2):829–831. doi: 10.1210/endo-120-2-829. [DOI] [PubMed] [Google Scholar]
  18. Jochen A., Berhanu P. Effects of metalloendoprotease inhibitors on insulin binding, internalization and processing in adipocytes. Biochem Biophys Res Commun. 1987 Jan 15;142(1):205–212. doi: 10.1016/0006-291x(87)90472-4. [DOI] [PubMed] [Google Scholar]
  19. Kandror K. V., Yu L., Pilch P. F. The major protein of GLUT4-containing vesicles, gp160, has aminopeptidase activity. J Biol Chem. 1994 Dec 9;269(49):30777–30780. [PubMed] [Google Scholar]
  20. Khan M. N., Baquiran G., Brule C., Burgess J., Foster B., Bergeron J. J., Posner B. I. Internalization and activation of the rat liver insulin receptor kinase in vivo. J Biol Chem. 1989 Aug 5;264(22):12931–12940. [PubMed] [Google Scholar]
  21. Levy J. R., Olefsky J. M. The trafficking and processing of insulin and insulin receptors in cultured rat hepatocytes. Endocrinology. 1987 Dec;121(6):2075–2086. doi: 10.1210/endo-121-6-2075. [DOI] [PubMed] [Google Scholar]
  22. Mastick C. C., Aebersold R., Lienhard G. E. Characterization of a major protein in GLUT4 vesicles. Concentration in the vesicles and insulin-stimulated translocation to the plasma membrane. J Biol Chem. 1994 Feb 25;269(8):6089–6092. [PubMed] [Google Scholar]
  23. Morihara K. Comparative specificity of microbial proteinases. Adv Enzymol Relat Areas Mol Biol. 1974;41(0):179–243. doi: 10.1002/9780470122860.ch5. [DOI] [PubMed] [Google Scholar]
  24. Müller D., Baumeister H., Buck F., Richter D. Atrial natriuretic peptide (ANP) is a high-affinity substrate for rat insulin-degrading enzyme. Eur J Biochem. 1991 Dec 5;202(2):285–292. doi: 10.1111/j.1432-1033.1991.tb16374.x. [DOI] [PubMed] [Google Scholar]
  25. Pease R. J., Sharp G. A., Smith G. D., Peters T. J. Isolation and partial characterization of the rat liver ligandosome fraction. Biochim Biophys Acta. 1984 Jul 11;774(1):56–66. doi: 10.1016/0005-2736(84)90274-8. [DOI] [PubMed] [Google Scholar]
  26. Pease R. J., Smith G. D., Peters T. J. Characterization of insulin degradation by rat-liver low-density vesicles. Eur J Biochem. 1987 Apr 1;164(1):251–257. doi: 10.1111/j.1432-1033.1987.tb11018.x. [DOI] [PubMed] [Google Scholar]
  27. Pease R. J., Smith G. D., Peters T. J. Degradation of endocytosed insulin in rat liver is mediated by low-density vesicles. Biochem J. 1985 May 15;228(1):137–146. doi: 10.1042/bj2280137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rolband G. C., Williams J. F., Webster N. J., Hsu D., Olefsky J. M. Deletion of exon 21 of the insulin receptor eliminates tyrosine kinase activity but preserves mitogenic signaling. Biochemistry. 1993 Dec 14;32(49):13545–13550. doi: 10.1021/bi00212a021. [DOI] [PubMed] [Google Scholar]
  29. Sonne O. Receptor-mediated endocytosis and degradation of insulin. Physiol Rev. 1988 Oct;68(4):1129–1196. doi: 10.1152/physrev.1988.68.4.1129. [DOI] [PubMed] [Google Scholar]
  30. Terris S., Steiner D. F. Binding and degradation of 125I-insulin by rat hepatocytes. J Biol Chem. 1975 Nov 10;250(21):8389–8398. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES