Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Dec 15;320(Pt 3):997–1003. doi: 10.1042/bj3200997

Increase of particulate nitric oxide synthase activity and peroxynitrite synthesis in UVB-irradiated keratinocyte membranes.

G Deliconstantinos 1, V Villiotou 1, J C Stavrides 1
PMCID: PMC1218026  PMID: 9003391

Abstract

Here we demonstrate that human keratinocytes possess a Ca2+/calmodulin-dependent particulate NO synthase that can be activated to release NO after exposure to UVB radiation. UVB irradiation (up to 20 mJ/cm2) of human keratinocyte plasma membranes resulted in a dose-dependent increase in NO and L-[3H]citrulline production that was inhibited by approx. 90% in the presence of N-monomethyl-L-arginine (L-NMMA). In time-course experiments with UVB-irradiated plasma membranes the changes in NO production were followed by analogous changes in soluble guanylate cyclase (sGC) activity. In reconstitution experiments, when particulate NO synthase was added to purified sGC isolated from keratinocyte cytosol, a 4-fold increase in cGMP was observed; the cGMP was increased by NO synthesized after UVB irradiation (up to 20 mJ/cm2) of particulate NO synthase. A 5-fold increase in superoxide (O2-) and a 7-fold increase in NO formation followed by an 8-fold increase in peroxynitrite (ONOO-) production by UVB (20 mJ/cm2)-irradiated keratinocyte microsomes was observed. UVB radiation (20 mJ/cm2) decreased plasma membrane lipid fluidity as indicated by steady-state fluorescence anisotropy. Membrane fluidity changes were prevented by L-NMMA. Changes in Arrhenius plots of particulate NO synthase in combination with changes in its allosteric properties induced by UVB radiation are consistent with a decreased fluidity of the lipid microenvironment of the enzyme. The present studies provide important new clues to the role of NO and ONOO- released by UVB-irradiated human keratinocytes in skin erythema and inflammation.

Full Text

The Full Text of this article is available as a PDF (583.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnelle D. R., Stamler J. S. NO+, NO, and NO- donation by S-nitrosothiols: implications for regulation of physiological functions by S-nitrosylation and acceleration of disulfide formation. Arch Biochem Biophys. 1995 Apr 20;318(2):279–285. doi: 10.1006/abbi.1995.1231. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Busconi L., Michel T. Endothelial nitric oxide synthase. N-terminal myristoylation determines subcellular localization. J Biol Chem. 1993 Apr 25;268(12):8410–8413. [PubMed] [Google Scholar]
  4. Deliconstantinos G., Anastasopoulou K., Karayiannakos P. Modulation of hepatic microsomal Ca2+-stimulated ATPase and drug oxidase activities of guinea pigs by dietary cholesterol. Biochem Pharmacol. 1983 Apr 1;32(7):1309–1312. doi: 10.1016/0006-2952(83)90287-3. [DOI] [PubMed] [Google Scholar]
  5. Deliconstantinos G., Kopeikina-Tsiboukidou L., Villiotou V. Evaluation of membrane fluidity effects and enzyme activities alterations in adriamycin neurotoxicity. Biochem Pharmacol. 1987 Apr 1;36(7):1153–1161. doi: 10.1016/0006-2952(87)90426-6. [DOI] [PubMed] [Google Scholar]
  6. Deliconstantinos G., Ramantanis G. Alterations in the activities of hepatic plasma-membrane and microsomal enzymes during liver regeneration. Biochem J. 1983 May 15;212(2):445–452. doi: 10.1042/bj2120445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deliconstantinos G. Temperature effect of cholesterol association with synaptosomal plasma membranes of rabbit brain. Biochem J. 1984 Sep 15;222(3):825–828. doi: 10.1042/bj2220825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Deliconstantinos G., Tsakiris S. Differential effect of anionic and cationic drugs on the synaptosome-associated acetylcholinesterase activity of dog brain. Biochem J. 1985 Jul 1;229(1):81–86. doi: 10.1042/bj2290081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Deliconstantinos G., Villiotou V., Fassitsas C. Ultraviolet-irradiated human endothelial cells elaborate nitric oxide that may evoke vasodilatory response. J Cardiovasc Pharmacol. 1992;20 (Suppl 12):S63–S65. doi: 10.1097/00005344-199204002-00019. [DOI] [PubMed] [Google Scholar]
  10. Deliconstantinos G., Villiotou V., Stavrides J. C. Met-enkephalin receptor-mediated increase of membrane fluidity modulates nitric oxide (NO) and cGMP production in rat brain synaptosomes. Neurochem Res. 1995 Feb;20(2):217–224. doi: 10.1007/BF00970547. [DOI] [PubMed] [Google Scholar]
  11. Deliconstantinos G., Villiotou V., Stavrides J. C. Modulation of particulate nitric oxide synthase activity and peroxynitrite synthesis in cholesterol enriched endothelial cell membranes. Biochem Pharmacol. 1995 May 26;49(11):1589–1600. doi: 10.1016/0006-2952(95)00094-g. [DOI] [PubMed] [Google Scholar]
  12. Deliconstantinos G., Villiotou V., Stavrides J. C., Salemes N., Gogas J. Nitric oxide and peroxynitrite production by human erythrocytes: a causative factor of toxic anemia in breast cancer patients. Anticancer Res. 1995 Jul-Aug;15(4):1435–1446. [PubMed] [Google Scholar]
  13. Deliconstantinos G., Villiotou V., Stavrides J. C. Scavenging effects of hemoglobin and related heme containing compounds on nitric oxide, reactive oxidants and carcinogenic volatile nitrosocompounds of cigarette smoke. A new method for protection against the dangerous cigarette constituents. Anticancer Res. 1994 Nov-Dec;14(6B):2717–2726. [PubMed] [Google Scholar]
  14. Deliconstantinos G., Villiotou V., Stravrides J. C. Release by ultraviolet B (u.v.B) radiation of nitric oxide (NO) from human keratinocytes: a potential role for nitric oxide in erythema production. Br J Pharmacol. 1995 Mar;114(6):1257–1265. doi: 10.1111/j.1476-5381.1995.tb13341.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Denicola A., Souza J. M., Gatti R. M., Augusto O., Radi R. Desferrioxamine inhibition of the hydroxyl radical-like reactivity of peroxynitrite: role of the hydroxamic groups. Free Radic Biol Med. 1995 Jul;19(1):11–19. doi: 10.1016/0891-5849(94)00239-g. [DOI] [PubMed] [Google Scholar]
  16. Farias R. N. Insulin-membrane interactions and membrane fluidity changes. Biochim Biophys Acta. 1987 Oct 5;906(3):459–468. doi: 10.1016/0304-4157(87)90020-7. [DOI] [PubMed] [Google Scholar]
  17. Farr P. M., Diffey B. L. The vascular response of human skin to ultraviolet radiation. Photochem Photobiol. 1986 Oct;44(4):501–507. doi: 10.1111/j.1751-1097.1986.tb04699.x. [DOI] [PubMed] [Google Scholar]
  18. Förstermann U., Pollock J. S., Schmidt H. H., Heller M., Murad F. Calmodulin-dependent endothelium-derived relaxing factor/nitric oxide synthase activity is present in the particulate and cytosolic fractions of bovine aortic endothelial cells. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1788–1792. doi: 10.1073/pnas.88.5.1788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Heck D. E., Laskin D. L., Gardner C. R., Laskin J. D. Epidermal growth factor suppresses nitric oxide and hydrogen peroxide production by keratinocytes. Potential role for nitric oxide in the regulation of wound healing. J Biol Chem. 1992 Oct 25;267(30):21277–21280. [PubMed] [Google Scholar]
  20. Hecker M., Mülsch A., Bassenge E., Busse R. Vasoconstriction and increased flow: two principal mechanisms of shear stress-dependent endothelial autacoid release. Am J Physiol. 1993 Sep;265(3 Pt 2):H828–H833. doi: 10.1152/ajpheart.1993.265.3.H828. [DOI] [PubMed] [Google Scholar]
  21. Hecker M., Mülsch A., Bassenge E., Förstermann U., Busse R. Subcellular localization and characterization of nitric oxide synthase(s) in endothelial cells: physiological implications. Biochem J. 1994 Apr 1;299(Pt 1):247–252. doi: 10.1042/bj2990247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ialenti A., Ianaro A., Moncada S., Di Rosa M. Modulation of acute inflammation by endogenous nitric oxide. Eur J Pharmacol. 1992 Feb 11;211(2):177–182. doi: 10.1016/0014-2999(92)90526-a. [DOI] [PubMed] [Google Scholar]
  23. Kupper T. S. Mechanisms of cutaneous inflammation. Interactions between epidermal cytokines, adhesion molecules, and leukocytes. Arch Dermatol. 1989 Oct;125(10):1406–1412. doi: 10.1001/archderm.125.10.1406. [DOI] [PubMed] [Google Scholar]
  24. Liu S., Beckman J. S., Ku D. D. Peroxynitrite, a product of superoxide and nitric oxide, produces coronary vasorelaxation in dogs. J Pharmacol Exp Ther. 1994 Mar;268(3):1114–1121. [PubMed] [Google Scholar]
  25. Moncada S., Higgs E. A. Molecular mechanisms and therapeutic strategies related to nitric oxide. FASEB J. 1995 Oct;9(13):1319–1330. [PubMed] [Google Scholar]
  26. Nathan C., Xie Q. W. Regulation of biosynthesis of nitric oxide. J Biol Chem. 1994 May 13;269(19):13725–13728. [PubMed] [Google Scholar]
  27. Radi R., Beckman J. S., Bush K. M., Freeman B. A. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys. 1991 Aug 1;288(2):481–487. doi: 10.1016/0003-9861(91)90224-7. [DOI] [PubMed] [Google Scholar]
  28. Schmidt H. H., Lohmann S. M., Walter U. The nitric oxide and cGMP signal transduction system: regulation and mechanism of action. Biochim Biophys Acta. 1993 Aug 18;1178(2):153–175. doi: 10.1016/0167-4889(93)90006-b. [DOI] [PubMed] [Google Scholar]
  29. Shinitzky M., Barenholz Y. Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim Biophys Acta. 1978 Dec 15;515(4):367–394. doi: 10.1016/0304-4157(78)90010-2. [DOI] [PubMed] [Google Scholar]
  30. Stefanovic-Racic M., Stadler J., Evans C. H. Nitric oxide and arthritis. Arthritis Rheum. 1993 Aug;36(8):1036–1044. doi: 10.1002/art.1780360803. [DOI] [PubMed] [Google Scholar]
  31. Tsuboi R., Sato C., Oshita Y., Hama H., Sakurai T., Goto K., Ogawa H. Ultraviolet B irradiation increases endothelin-1 and endothelin receptor expression in cultured human keratinocytes. FEBS Lett. 1995 Sep 4;371(2):188–190. doi: 10.1016/0014-5793(95)00912-s. [DOI] [PubMed] [Google Scholar]
  32. Van der Vliet A., Smith D., O'Neill C. A., Kaur H., Darley-Usmar V., Cross C. E., Halliwell B. Interactions of peroxynitrite with human plasma and its constituents: oxidative damage and antioxidant depletion. Biochem J. 1994 Oct 1;303(Pt 1):295–301. doi: 10.1042/bj3030295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Villiotou V., Deliconstantinos G. Nitric oxide, peroxynitrite and nitroso-compounds formation by ultraviolet A (UVA) irradiated human squamous cell carcinoma: potential role of nitric oxide in cancer prognosis. Anticancer Res. 1995 May-Jun;15(3):931–942. [PubMed] [Google Scholar]
  34. Warren J. B., Loi R. K., Coughlan M. L. Involvement of nitric oxide synthase in the delayed vasodilator response to ultraviolet light irradiation of rat skin in vivo. Br J Pharmacol. 1993 Jul;109(3):802–806. doi: 10.1111/j.1476-5381.1993.tb13645.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. White C. R., Brock T. A., Chang L. Y., Crapo J., Briscoe P., Ku D., Bradley W. A., Gianturco S. H., Gore J., Freeman B. A. Superoxide and peroxynitrite in atherosclerosis. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1044–1048. doi: 10.1073/pnas.91.3.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES